
The world runs on code. We secure it.
e-Book

Software Composition
Analysis
The ultimate guide to SCA

E-BOOK | SOFTWARE COMPOSITION ANALYSIS THE ULTIMATE GUIDE TO SCA | 2

Table of Contents

Introduction... 3

Section 1: Understanding Open Source Software... 4

	> Open Source Code Evolves Over Time.. 5

	+ The impact of open source code evolution.. 5

	> Open Source Code Vulnerability ... 6

	+ Example of an attack timeline.. 7

	> Dealing With Vulnerability Alerts.. 8

	> Working Safely With Open Source Components.. 9

	+ Managing licenses, compliance and regulatory requirements..................... 9

	+ Application testing... 10

Section 2: Understanding Software Composition Analysis.. 11

	> Key Aspects of SCA.. 12

Section 3: A Technical Deep Dive Into SCA... 13

	> Open Source Detection Methodologies.. 14

	+ Signature (or file system) scanning.. 14

	+ Package manager inspection.. 14

	+ Build dependency analysis.. 15

	+ Snippet scanning... 15

	> Component Identification... 16

	> Risk Metrics.. 17

	> License Risks... 18

Section 4: What to Consider When Choosing an SCA Solution................................ 19

Conclusion.. 21

Further Reading.. 21

E-BOOK | SOFTWARE COMPOSITION ANALYSIS THE ULTIMATE GUIDE TO SCA | 3

Introduction
Software composition analysis (SCA) is the
detection and identification of open source or
third-party components within an application;
and the provision of detailed risk metrics on the
vulnerabilities, potential license conflicts, and
outdated libraries that relate to these elements.

Open source software has facilitated the
rapid evolution of application development,

and shortened development cycles. Its use
is commonplace: many analysts report that
open source makes up over 80% of the average
codebase.

However, there can be risks associated
with using open source components that
organizations must identify, prioritize, and
address:

Organizations therefore need insight into open source security vulnerabilities within their software,
including risk severity metrics, detailed descriptions, and remediation guidance, and that’s what
software composition analysis solutions should deliver.

Security
vulnerabilities can
leave sensitive data
exposed to a breach

Complex license
requirements can
jeopardize your
intellectual property

Outdated open
source libraries can
place unnecessary
support and
maintenance
burdens on your
development teams

Open source supply
chain risks are
growing as attackers
use the supply chain
to expand their
victim counts.

E-BOOK | SOFTWARE COMPOSITION ANALYSIS THE ULTIMATE GUIDE TO SCA | 4

Custom (or proprietary) code has been originally developed by a person or a team and is the
intellectual property of that organization or individual.

Custom code is maintained by the creators or owners of that code, so any innovation or
enhancements to it must be made by those responsible, including new releases, patches, and any
updates required to fix vulnerabilities. Custom code can be incorporated into other projects or
released as a complete software application.

Open source code is also created by developers, often as a part of a community-driven project
through which ideas and contributions are shared.

This code, or software, is made available to the community as components or projects. Because the
innovation happens organically within the community, updates, patches, and new releases are the
responsibility of that community. As a project or component evolves over time, it can have associated
licenses that detail any restrictions, permissions, or requirements that the project originator has chosen
to place upon it.

SECTION 1

Understanding Open Source Software

E-BOOK | SOFTWARE COMPOSITION ANALYSIS THE ULTIMATE GUIDE TO SCA | 5

While two components may share a name, they may differ greatly. While one vendor’s take on
an open source component may be fundamentally the same as another’s, they may have made
some minor changes to suit their needs.

As each component branch (known as a distribution, or distro) goes through changes, this can
eventually create significant differences between versions of what might have started out as
the same component. These differences can potentially introduce additional maintenance and
development costs, or expose you to unexpected security and compatibility issues.

The impact of open source code evolution

Open Source Code Evolves
Over Time
An open source component or project begins with a master branch, which is evolved and
changed by the open source community as they add more branches to modify the code. This
is usually with the aim of adding new features or functionality, performing bug fixes, and
undertaking testing.

The new branches are then usually merged into the master branch, to become part of the main
project. Or, they are maintained as a separate fork, when contributors or groups modifying the
project intend to take it in a new direction, or change it to suit another use case.

Master

New Dev Branch

Bug Fix Branch

UsersNew Feature Branch

E-BOOK | SOFTWARE COMPOSITION ANALYSIS THE ULTIMATE GUIDE TO SCA | 6

Not every open source component will become vulnerable, and not all
vulnerabilities may be exploitable.

Newer versions may
not contain the same
vulnerabilities that the original
or previous versions did.

Others may contain their own
vulnerabilities that did not
exist in previous versions.

A component version with
no vulnerability may have a
vulnerability introduced into
it in the future.

Open Source Code Vulnerability
Open source components are used everywhere and, as with custom code, there are situations
in which open source components can be vulnerable. It’s important to understand the
difference between a vulnerable component and vulnerable versions of that component.

A component can contain vulnerabilities, but only in certain versions. It all depends on how that
software is constructed and how it evolves over time.

E-BOOK | SOFTWARE COMPOSITION ANALYSIS THE ULTIMATE GUIDE TO SCA | 7

Attackers first must discover a vulnerability,
then develop an exploit to take advantage of it in
order to compromise the vulnerability. Even then,
how that component is incorporated into the
overall code of the application may determine
whether an exploit can be executed.

 Љ After a component version is released,
a vulnerability is discovered within it. It
could be the creators who discover the
vulnerability, maybe a security research
team, or perhaps attackers.

 Љ The vulnerability may be documented in a
vulnerability database (like the NVD), or
those who discover it may keep it secret
for some time while working on a patch, or
an exploit.

 Љ Once the patch is released, there may be
a lag before it is applied everywhere the
component has been used.

 Љ In the meantime, an exploit may be
developed and used secretly, or (as is
often the case) published among attacker
communities or on public forums such as
YouTube so anyone can use it.

The time between the exploit being
discovered and the patch being applied is
the window of opportunity for an attacker
to infiltrate the application, potentially
compromising data, intellectual property,
or simply impeding the application’s
performance.

Example of an attack timeline

Component
Version

Released

Patch
Released

Vulnerability
Discovered

Patch
Applied

and/or

Exploit
Published

Vulnerability
listed on

database(s)

Component and
software is vulnerable

Clearly, there is a need to patch vulnerabilities quickly.

E-BOOK | SOFTWARE COMPOSITION ANALYSIS THE ULTIMATE GUIDE TO SCA | 8

Dealing With Vulnerability Alerts
Depending on the source or origin of the component, you may be notified when they’re
discovered, or you may not. For example, components from Red Hat or Apache may yield helpful
alerts when vulnerabilities are discovered, or when patches are available to remedy them.

Components from community-driven development groups may not have such proactive alerting,
making it your responsibility to identify and fix these risks, whether you have the support of the
community or not.

E-BOOK | SOFTWARE COMPOSITION ANALYSIS THE ULTIMATE GUIDE TO SCA | 9

It’s not just vulnerabilities that you will need
to check your code for. Organizations that
create software are often subject to external
and internal standards and requirements, such
as customer SLAs, internal specifications,
and data protection regulation. Open source
projects may also have licensing restrictions
or requirements, determined by the author or
originator of the component.

Open source projects can have virtually
any licensing structure. There are two main
categories of open source licenses: reciprocal
(or copyleft) licenses, and permissive
licenses.

 Љ Reciprocal licenses generally place
restrictions or requirements on the
distribution, attribution, or release
of source code associated with the
component, or the projects into which that
component is incorporated.

 Љ Permissive licenses generally place
minimal requirements on software
distribution and attribution.

Common examples of open source licenses
include GPL 3.0, MIT License, and Apache 2.0.
There are also some examples of licenses that
illustrate how an author can be free to create
their own. These include the WTFPL license
(Do What the **** You Want To Public License),
which is completely open, and the Beerware
License, which requires that anyone who
leverages a component with that license buys
the author a beer.

It’s essential to be aware of the licensing
requirements that your organization—and your
application—is subject to, and ensure you have
the software security testing solutions in your
arsenal to help you ensure compliance on an
ongoing basis.

Managing licenses, compliance and regulatory requirements

Working Safely With Open
Source Components
You need the right tools, methods, and processes firmly established to create stable and
secure software from your mix of custom code and open source components. Your developers
work in a complex software development environment, with many aspects which must be
configured and maintained to produce viable software.

E-BOOK | SOFTWARE COMPOSITION ANALYSIS THE ULTIMATE GUIDE TO SCA | 10

The tools and gadgets your developers, security,
and DevOps teams use are instrumental to
the performance, stability, and security of the
software your organization publishes. When your
software uses a mix of custom code and open
source components, the application security
testing you use needs to be purpose-built to

examine, identify, triage, and remediate any
issues across all types of code.

Organizations tend to use static application
security testing (SAST), dynamic application
security testing (DAST), interactive application
security testing (IAST), and software
composition analysis (SCA).

SAST examines source code directly to look
for weaknesses or vulnerabilities in the code
that could be exploited. This analysis can be a
lengthy process, depending on the size of the
codebase being analyzed, and can generate
huge volumes of results that need to be
addressed. Any identified vulnerabilities must be
removed, and those code components rewritten.
This can take considerable time and effort.

SCA does not examine the source code itself—
it looks for open source components within
it. It needs to be able to detect and identify
open source components within the software
and match those identified versions against a
database of vulnerabilities. Any vulnerabilities
that are identified within that software then
need to be patched or replaced.

Review your development environment, CI/
CD pipeline, SDLC, and DevOps practices
and evaluate how you have integrated those
necessary technologies along the way. You
shouldn’t wait until the security testing phase
to identify vulnerable open source components
within your software. Use the right solutions
during the process, not afterwards.

In summary: if you use open source
components, you must have a way of
analyzing the composition of your software
to ensure the components you’re using are
safe and licensed appropriately. To do this
properly, software composition analysis (SCA)
is a critical resource.

Application testing

Application testing is part of the development process

SAST
Reviews source
code to identify
the sources of
vulnerabilities

IAST
Is a combination of
both SAST and DAST
methodologies

DAST
Is a so-called
‘black-box’
testing method
that looks at
functionality
and tests by
performing
attacks—it does
not look at the
source code

SCA
Identifies open
source code and
components,
matching them
with known
vulnerabilities, such
as those listed
on the National
Vulnerability
Database (NVD)

E-BOOK | SOFTWARE COMPOSITION ANALYSIS THE ULTIMATE GUIDE TO SCA | 11

Software composition analysis is the standard term for analyzing software, discovering open
source components and third-party libraries within it, and identifying the associated risks.

SECTION 2

Understanding Software
Composition Analysis

SCA focuses on measuring two main types of
risks: security risk (open source vulnerabilities)
and license risk (noncompliance, or conflicts
between open source licenses). Sometimes,
there may be a third, non-standard category
of risk that explores community activity
surrounding the component.

When it first appeared around a decade ago,
SCA originally focused on license compliance
for software and embedded technologies, such

as hardware and chipsets. However, with the
rapid growth in the use of open source code,
software security has become its biggest use
case, and SCA is now evolving to extend its
influence across application security testing
(AST), with some SCA solutions integrating and
correlating data with SAST solutions to better
assess exploitability and examine if vulnerable
components are actually being used by the
application.

E-BOOK | SOFTWARE COMPOSITION ANALYSIS THE ULTIMATE GUIDE TO SCA | 12

 Љ Accurately detect and identify open source
components and component versions in
use within software

 Љ Provide insight into vulnerabilities
associated with those components and
component versions, as well as any
licenses that may apply to them

 Љ Provide actionable risk insight and
remediation guidance

 Љ Allow organizations to configure and
enforce policies against the analysis
results

 Љ Integrate with tools that your organization
is using in its SDLC or CI/CD pipelines

 Љ Deliver insight and results to relevant
people, in the format that is most helpful
to them

An SCA solution must be able to:

 Љ The ability to identify if a vulnerable open
source component version is exploitable

 Љ Metrics associated with component bugs
and community activity

 Љ Correlation of analysis results with other
application security testing solutions

Some SCA solutions might include additional functionality:

Key Aspects of SCA
When an effective SCA solution is integrated into an organization’s continuous integration/
continuous delivery (or development) pipeline (CI/CD) and software development lifecycle (SDLC),
it enables development, security, and DevOps teams to prioritize and focus their remediation
efforts where they will be most effective and least costly, before any potentially at-risk projects go
into production.

E-BOOK | SOFTWARE COMPOSITION ANALYSIS THE ULTIMATE GUIDE TO SCA | 13

SECTION 3

A Technical Deep Dive Into SCA

Detection
Open source detection is
the process of finding open
source components within
software and codebases.
Some approaches to
detection yield a high number
of false positives and take a
long time to complete, while
others yield higher accuracy
in a shorter amount of time,
with slightly more up-front
configuration.

Identification
Next, SCA identifies the open
source components it has
detected by referencing a
database of open source
component information.
The output usually includes
basic component version
information, and may
include details of where the
component version came
from, plus other metadata.

Risk metrics
The solution produces risk
metrics based on what has
been detected and identified –
this is almost always security
information and license data.
This also involves checking
against a reference database
(or databases) covering
vulnerability and license data.
It may include data exclusive
to the solution vendor, if they
have a security research team.

Software composition analysis happens in three major steps:

E-BOOK | SOFTWARE COMPOSITION ANALYSIS THE ULTIMATE GUIDE TO SCA | 14

Open Source Detection
Methodologies
Not all SCA solutions take the same approach
to detection. For example, some solutions will
perform signature scanning, which generates
a SHA-1 hash signature of each open source
component it detects. These alphanumeric
strings uniquely represent individual
components, like fingerprints. The SCA solution
then tries to match these hash signatures
against those listed in a database of previously
scanned open source components.
Some SCA solutions will look at the files created
by your build tools and package managers:

package manager inspection. This can
determine the specific version of each component
being used—it’s the equivalent of checking what
the developers say is in the software.
Finally, an SCA solution may also conduct
build dependency analysis, examining the
software after development. This identifies
any dependencies that have not been declared
but were brought into the application during
the build process—such dependencies
could present a potential risk by introducing
vulnerabilities into software.

The main benefit of signature scanning is its
ability to produce a large number of results.
This can be perceived as the most complete or
comprehensive representation of all the open
source components within a codebase.

Signature scanning can detect any non-declared
components that may not have been included in the
package manager files, or can be used if the software
was built without the use of package managers.

However, the scanning process can take a long
time, consumes a lot of compute power, and
produces a large volume of results that need
to be reviewed—often including a significant
number of false positives. When time is short
and production deadlines are getting closer, this
methodology may cause you more headaches
than it resolves.

Signature (or file system) scanning

When an SCA solution uses package managers
to detect open source components, you will
see a few more benefits. The results tend to be
highly accurate, with very few false positives,
and with less noise and fewer junk results, it is
easier for your developers or security teams to

review the output and prioritize their efforts.

These scans also tend to be a lot faster, and this
methodology is more suitable for DevOps thanks
to its integration with the CI/CD tools that
developers are already using.

Package manager inspection

E-BOOK | SOFTWARE COMPOSITION ANALYSIS THE ULTIMATE GUIDE TO SCA | 15

If open source components have not been
declared, or if the software is built without the use
of package managers (as we often see in some
legacy applications), package manager inspection
may not identify all open source elements within
the analyzed codebase. This is why solution
providers often pair package manager inspection
with build dependency analysis.

Build dependency analysis detects any
non-declared dependencies that have
been incorporated during a build, or any
dependencies of dependencies (transitive
dependencies).

Snippet scanning is similar to signature
scanning. Rather than looking at entire open
source components, the SCA solution performs
a signature scan of smaller subsets of code,
referencing a database of previously scanned
and documented component segments.

Snippet scanning can help identify potential
license requirements, license conflicts, or risk
of noncompliance resulting from a developer
copying a small piece of code from a larger body
of work. This is predicated on the results of a

snippet scan being matched to an original open
source component.

Unsurprisingly, snippet scanning takes a
long time and consumes a lot of compute
resources. The results can be noisy, with a long
list of potential matches, a low certainty of
exact matches, and a high prevalence of false
positives. These snippet results are virtually
worthless at identifying vulnerabilities, since
a vulnerability does not need to exist within a
small snippet of code. This type of scanning
usually benefits only license-oriented use cases.

Build dependency analysis

Snippet scanning

E-BOOK | SOFTWARE COMPOSITION ANALYSIS THE ULTIMATE GUIDE TO SCA | 16

Component Identification
After open source components have been
detected using one or several methods, they
need to be identified. Often, component
metadata is referenced against a database
of open source components maintained by
the solution vendor. Such databases contain
information from various code repositories and
sources, such as GitHub, Maven Central, and
many others.

If a match for the detected component is found
in the database, its information is displayed by
the SCA solution. This is where the risk of false
positives is greatest, and where selecting the
right detection method can have the greatest
positive impact on the quality and actionability
of your results.

E-BOOK | SOFTWARE COMPOSITION ANALYSIS THE ULTIMATE GUIDE TO SCA | 17

Risk Metrics
Once open source components have been
detected and identified, the SCA solution needs
to generate associated risk metrics. This is
essential for prioritizing where to focus your
efforts, in order to improve your risk posture.

Firstly, identified component versions are
checked against databases of vulnerabilities and
licenses. Security and license risks are reported
back to the SCA tool’s analytics UI (user
interface) and associated with the components
that were analyzed in the codebase.

Security risk often has standardized scoring,
usually, CVSS2.0 or CVSS3.0, but it’s important
to recognize that risk metrics are not always
standardized. The determined severity or priority
associated with risk metrics can vary by SCA
solution vendor. Where non-standard scoring is
used, it’s usually possible to adjust sensitivity to
risk, based on criteria associated with the project
that’s being scanned. This is not a standard
capability for all SCA solutions and does prevent
comparison of the risk profile of one project
against the relative risk profile of another.

E-BOOK | SOFTWARE COMPOSITION ANALYSIS THE ULTIMATE GUIDE TO SCA | 18

License Risks
Security risk metrics are among the most common criteria for organizational policy rules.
License risks, however, are highly contextual, and can vary, depending on how the application
is deployed.

 Љ Is it an internal application that’s on
company servers and not for public or
commercial use?

 Љ Is it an external-facing application?

 Љ Is it a commercial application?

Other components or licenses within the
application may also impact license risk: this
is known as license conflict. If an application
uses open source components with both
permissive and reciprocal licenses, this can
lead to some complicated results, and any
royalties or attribution requirements may be a
concern. These various factors can determine
the severity of your license risk.

While there is no standardized measure
of license risk, it’s generally accepted that
licenses which cost money, restrict use, or
require sharing intellectual property from
the associated codebase are all generally
considered to be higher risk.

In terms of SCA, license risk is usually most
relevant to embedded devices or chipset
manufacturers. This is particularly relevant
to use of the internet of things (IoT), and to
tier-one and tier-two automotive industry
suppliers, system integrators, and other
organizations where it can be hard to access,
replace, or update the software, or the device
on which the software sits. This tends to be
the case in industries where potential loss of
intellectual property due to license conflicts or
noncompliance can be devastating.

E-BOOK | SOFTWARE COMPOSITION ANALYSIS THE ULTIMATE GUIDE TO SCA | 19

Focus on solutions with higher accuracy and fewer false positives.

Comprehensive results can be good, but only if you have the time to review and verify them all.
It’s also worth noting that risk metrics aren’t standardized across vendors, and can vary in severity
or priority.

Highly consider vendors whose solution is supported by a dedicated security research team.

Make sure the vendor is proactively finding zero day or non-public vulnerabilities, and enhancing
their existing security records.

Look for vendors that provide a comprehensive list of any publicly reported vulnerabilities in
open source components.

These need to be accompanied by appropriate remediation guidance.

Ensure the solution will fully support the requirements of your security, legal, and
engineering teams.

It should enable them to configure and enforce policies against the analysis results.

SECTION 4

What to Consider When Choosing an
SCA Solution

E-BOOK | SOFTWARE COMPOSITION ANALYSIS THE ULTIMATE GUIDE TO SCA | 20

Prioritize solutions that are part of a complete application security testing (AST) portfolio.

Or those that complement what you’re currently using.

Certify available integrations with your package managers, build tools, code repositories, issue
management solutions, and so on.

Give priority to solutions which enable cross-product synergy, which will help to prioritize your
remediation efforts and enhance the accuracy and actionability of the analysis.

Ensure the solution provides Software Bill of Materials (SBOMs)

Make sure the vendor supports easy creation of SBOMs in required report formats.

Verify that the solution integrates with the tools you’re already using in your SDLC or
CI/CD pipelines.

It must enable you to automatically trigger scans, share results, and reduce time to remediation.

Validate that the solution supports unified user management, project creation, and scan
initiation capabilities for multiple testing technologies.

Solutions that do this will yield the greatest efficiencies and reduce your total cost of ownership.

E-BOOK | SOFTWARE COMPOSITION ANALYSIS THE ULTIMATE GUIDE TO SCA | 21

About Checkmarx
Checkmarx is constantly pushing the boundaries of Application Security Testing to make security seamless and
simple for the world’s developers while giving CISOs the confidence and control they need. As the AppSec testing
leader, we provide the industry’s most comprehensive solutions, giving development and security teams unparalleled
accuracy, coverage, visibility, and guidance to reduce risk across all components of modern software – including
proprietary code, open source, APIs, and Infrastructure as code. Over 1,675 customers, including 45% of the Fortune
50, trust our security technology, expert research, and global services to securely optimize development at speed
and scale. For more information, visit our website, check out our blog, or follow us on LinkedIn.

Conclusion
Open source components are not going to disappear any time soon. Organizations therefore
need to use SCA as part of their software security strategy.

The key to implementing SCA successfully is to select a solution that can be integrated with your
software development tools, that supports internal and external standards for risk tolerance and
compliance, and gets detailed insight promptly into the hands of the people who need it.

Many security experts expect to see an uptick in cybercriminals exploiting vulnerable open
source libraries to gain access to sensitive and valuable data. This trend is likely to increase due
to the prevalence and accessibility of open source components, and the (historically) inadequate
documentation, evaluation, and monitoring of the risks they contain. Clearly, software composition
analysis solutions are needed now, and will be required well into the future.

Solution Brief
Download the Checkmarx
SCA solution brief

Analyst Report
2022 Gartner Magic
Quadrant for Application
Security Testing

Website
Discover next generation
open source security:
Checkmarx SCA

Further reading:

© 2022 Checkmarx Ltd. All rights reserved. Checkmarx is a registered trademark of Checkmarx Ltd. All other marks and trade names mentioned
herein belong to their respective owners. Checkmarx reserves the right to modify, transfer, or otherwise revise this publication at its sole
discretion and without notice.

https://checkmarx.com/
https://checkmarx.com/blog/
https://www.linkedin.com/company/checkmarx
https://checkmarx.com/resources/data-sheet/cxsca
https://checkmarx.com/resources/data-sheet/cxsca
https://checkmarx.com/resources/data-sheet/cxsca
https://info.checkmarx.com/gartner-mq-2022
https://info.checkmarx.com/gartner-mq-2022
https://info.checkmarx.com/gartner-mq-2022
https://info.checkmarx.com/gartner-mq-2022
https://checkmarx.com/product/cxsca-open-source-scanning/
https://checkmarx.com/product/cxsca-open-source-scanning/
https://checkmarx.com/product/cxsca-open-source-scanning/
https://checkmarx.com/product/cxsca-open-source-scanning/
https://info.checkmarx.com/gartner-mq-2022
https://checkmarx.com/product/cxsca-open-source-scanning/
https://checkmarx.com/resources/data-sheet/cxsca
https://checkmarx.com/resources/data-sheet/cxsca
https://info.checkmarx.com/gartner-mq-2022
https://checkmarx.com/product/cxsca-open-source-scanning/

