
A Quick Intro to
Go Language Security Topics
Research by Ricardo Gonçalves

2A Q U I C K I N T R O T O G O L A N G U A G E S E C U R I T Y T O P I C S

Are you new to the Go language (Golang), or are you an old schooler who just

wants a single resource highlighting all the security advantages of Go? You’ve

come to the right place! This summary is a compilation of the best practices that

you need to follow if you want to create secure applications in Go. It’s a summary

of the extended work found in the Go Language Guide – Web Application Secure

Coding Practices. This Guide is the first of its kind for the Go Language and

Checkmarx is pleased to have supported and helped direct this effort for the

software developer and AppSec community.

A frequent difficulty experienced when you’re starting to use a new programming

language is the lack of secure coding instruction and training about common pitfalls

and coding errors during the language-learning process. The topic of security is often

neglected by most articles pertaining to a language or security discussions are very

dispersed around the thousands of blog posts. Also, most of the time you want or

need to finish things in a timely fashion, and as we all know, security and time do not

always go hand in hand!

Therefore, to help you quickly increase your knowledge of Go security in general, we’ve compiled this short

summary of security topics you should be aware of when using Go. If you’re ready to learn more… Let’s Go!

https://info.checkmarx.com/hubfs/Ebooks/The_Go_Language_Guide_Web_Application_Secure_Coding_Practices_OWASP_08.17.20.pdf

A
 Q

U
I

C
K

 I
N

T
R

O
 T

O
 G

O
 L

A
N

G
U

A
G

E
 S

E
C

U
R

I
T

Y
 T

O
P

I
C

S

3

One thing you should consider during the development

process is the amount of third parties that your application

relies on. In such cases, user input should always be

validated and sanitized prior to other actions that interact

with the data. If you just rely on the third parties to perform

this function, you might be leaving your application and

clients’ data at risk. The lack of validation and sanitization

could expose your application to Cross-site Scripting (XSS),

SQL Injection (SQLi), and other attacks.

Therefore, perform some housekeeping first by verifying the

integrity of the data by using input validation, and try to use

open source libraries that have active development and high

ratings, which might also be a double-edge sword... as new

exploits targeting your open source choices can affect your

application, so always be sure you’re up-to-date!

This point is important because Go has some security

features out of the box. For example, Cross-site Scripting

can be addressed with automatic context detection using

the standard library HTML templates, and SQL Injections

can be address with the database/sql package, which

provides a well-defined interface, but needs to be used

in conjunction with a database driver.

Apart from these two security problems that can be

addressed by filtering the input and escaping output,

there are more challenges that you need to be aware

of. In the following sections, we’ll point out the security

preventions and configurations that you can use in the

Go language to address the following security aspects:

• Regular Expressions Denial of Service

• CSRF Attacks

• Security Headers

• Sessions and Cookies

• Communication Security

• Secure Data Storage

• Memory Management and Concurrency

• System Configuration

Data Integrity –
Validate and Sanitize1.

https://golang.org/pkg/database/sql/

A
 Q

U
I

C
K

 I
N

T
R

O
 T

O
 G

O
 L

A
N

G
U

A
G

E
 S

E
C

U
R

I
T

Y
 T

O
P

I
C

S

4

When you’re building an application, it’s never a good idea to trust a user’s input

data. Therefore, you should always perform input validation and sanitization, for

example, checking that only properly formed data is entering your application, and

modifying the input to ensure that it is valid.

In Go, you can use some native libraries to protect your application from malicious

input data. These native libraries, together with the common best practices for

input validation [1], can spare you from future headaches. Once you know the type

of data that is expected for a specific input field, you can validate it with following

native packages:

• strconv: package to convert strings input by users into specific types

• strings: package that contains all functions that handle strings and its
properties

• regexp: package for regular expressions to accommodate custom formats

• utf8: package that implements functions and constants to support text
encoded in UTF-8

Apart from the native packages, there are some third-party ones that can help

you in troubled times:

• gorilla: is one of the most used packages for web application security. It has
support for WebSockets, cookie sessions, RPC, among others

• govalidator: is a package of validators and sanitizers for strings, structs, and
collections that’s based on validator.js

• Validator: is a package validator that implements value validations for

structs and individual fields based on tags

Input
Validation2.

https://golang.org/pkg/strconv/
https://golang.org/pkg/strings/
https://golang.org/pkg/regexp/
https://golang.org/pkg/utf8/
https://github.com/gorilla/
https://github.com/asaskevich/govalidator
https://github.com/go-playground/validator

A
 Q

U
I

C
K

 I
N

T
R

O
 T

O
 G

O
 L

A
N

G
U

A
G

E
 S

E
C

U
R

I
T

Y
 T

O
P

I
C

S

5

The previous references focused on input validation, but in

addition to that, another technique that can be used is input

sanitization. It collects the inputted values and removes or

replaces some of the data. This is often used as an extra layer of

security after input validation. In Go, the native package html is

composed of two functions that can help in input sanitization:

• EscapeString: accepts a string and returns the same
string with special characters escaped (it only escape few
characters)

• UnescapeString: function to convert from entities to
characters

Since these packages do not address all of the characters, there

are some third-party packages that you can rely on as well:

• bluemonday: takes untrusted user-generated content as an
input, and will return HTML that has been sanitized against
a whitelist of approved HTML elements and attributes so
that you can safely include the content in your web page

• sanitize: this package provides functions for sanitizing

text in Golang strings

Even if you validate and sanitize all of the data that is entering

your application, it is also important to validate it before

outputting it to clients, since it is at the output phase that

injections actually occur. If you neglect input or output

validations, you might be exposing your application to some

of the most notorious web application attacks: XSS and SQLi.

Without going in to great detail, XSS allows an attacker to inject

malicious code into web pages [2]. In Go, you can prevent XSS with

some HTML filtering functions from the text/html package:

• HTMLEscapeString: returns the escaped HTML equivalent
of the plain text inputted data

• JSEscapeString: returns the escaped JavaScript equivalent

of the plain text inputted data

An important point that you should also take into consideration

is the content type in your HTTP headers. It should be validated

so it does not render the content in an unspecified and potentially

dangerous manner.

SQLi happens because of the lack of proper input or output

validation. To keep it simple, if a variable that contains

characters (with special meaning to the database management

system) is added to a SQL query, your application becomes

vulnerable to SQLi [3]. To prevent SQLi, you should follow the

standard good practices to address it [4], like the usage of

prepared statements or stored procedures. In Go, you can use the

Prepare function from the database/sql package, which will allow

you to create parameterized queries. However, you need to import

the appropriate driver for your database, and the chosen driver

needs to implement the required method. With these conditions,

the database/sql package will be aware of what special characters

it needs to handle—and will escape them.

https://golang.org/pkg/html/
https://golang.org/pkg/html/#EscapeString
https://golang.org/pkg/html/#UnescapeString
https://github.com/microcosm-cc/bluemonday
https://github.com/kennygrant/sanitize
https://golang.org/pkg/text/template
https://golang.org/pkg/text/template/#HTMLEscapeString
https://golang.org/pkg/text/template/#JSEscapeString
https://golang.org/pkg/database/sql/
https://github.com/golang/go/wiki/SQLDrivers

A
 Q

U
I

C
K

 I
N

T
R

O
 T

O
 G

O
 L

A
N

G
U

A
G

E
 S

E
C

U
R

I
T

Y
 T

O
P

I
C

S

6

A regular expression, regex, is a sequence of characters that defines a search pattern, which is used to search for

one or more characters within a string. You may want to take advantage of it to various ends, some of them even

related to the input validation point. For example, in some programming languages, when you use the built-in

regular expressions module/package, you might be indirectly exposing yourself to a security vulnerability, called

ReDoS, which stand for regular expression denial of service [5]. In short, it happens because of some vulnerable

regular expressions that can take exponential amounts of time while trying to match a maliciously-crafted input,

exposing your application to a possible denial of service.

In Go, you can rest assure by using the regexp package, as it guarantees to run in linear time [6].

Regular
Expressions3.

https://golang.org/pkg/regexp/

A
 Q

U
I

C
K

 I
N

T
R

O
 T

O
 G

O
 L

A
N

G
U

A
G

E
 S

E
C

U
R

I
T

Y
 T

O
P

I
C

S

7

CSRF (or XSRF) stands for Cross-Site Request forgery [7], and it

is commonly known as one click attack or session riding. In

short, it is an attack that forces the end user to perform

unwanted actions on a web application in which they are

currently authenticated. CSRF is possible because the server

does not distinguish between requests that are made during

a legitimate user session workflow, and malicious requests.

Therefore, to prevent for CSRF attacks, the most commonly

used approaches are [8]:

• Check standard headers to verify that the request is

from the same origin

• Include a pseudo-random number with non-POST

requests (aka CSRF token)

To address this security vulnerability in your Go

application, you can use one of the following frameworks

to easily solve this issue:

• gorilla/csrf: provides CRSF prevention
middleware for Go web applications and services

• nosurf: is an HTTP package for Go that helps you
prevent CRSF attacks

• csrf: middleware for CSRF attacks that generates
and validates CSRF tokens for Macaron framework

Cross-site Request
Forgery (CSRF)4.

https://github.com/gorilla/csrf
https://github.com/justinas/nosurf
https://github.com/go-macaron/csrf

A
 Q

U
I

C
K

 I
N

T
R

O
 T

O
 G

O
 L

A
N

G
U

A
G

E
 S

E
C

U
R

I
T

Y
 T

O
P

I
C

S

8

To give an extra layer of security to your web application, you can always rely on security headers. These will tell the browser

how to behave when handling your site’s content [9]. A good example is the Content Security Policy (CSP[10] , which will address

some types of attack by allowing you to control the resources the user agent is allowed to load for a given page. These attacks

can be: XSS, clickjacking, and other data injection attacks. If you’d like to add an extra layer of protection in your application

against XSS attacks, you could use the script-src definition, which block scripts unless they are from the sources specified in the

policy [11].

In Go, you can simply enable and configure all the security headers that you want, referring to one of the following packages:

• secure: is an HTTP middleware for Go that facilitates some quick security wins. It’s a standard net/http Handler and can
be used with many frameworks or directly with Go’s net/http package

Security
Headers5.

https://github.com/unrolled/secure

A
 Q

U
I

C
K

 I
N

T
R

O
 T

O
 G

O
 L

A
N

G
U

A
G

E
 S

E
C

U
R

I
T

Y
 T

O
P

I
C

S

9

The proper configuration of sessions and cookies are key points to secure your web application and its clients.

Also, it is quite obvious that you don’t want your applications’ clients to get their cookies stolen, right?

For session management, your application should only recognize the server’s session management controls, and

the session creation should be done on a trusted source [12].

For cookies security, you can use the net/http package, specifically the SetCookie function to properly configure

it. You will be able to easily set the httpOnly and secure flags with this function.

Sessions and
Cookies6.

https://golang.org/pkg/net/http/
https://golang.org/pkg/net/http/#SetCookie

A
 Q

U
I

C
K

 I
N

T
R

O
 T

O
 G

O
 L

A
N

G
U

A
G

E
 S

E
C

U
R

I
T

Y
 T

O
P

I
C

S

10

In order to guarantee data integrity for your web application, and be protected against attacks targeting communications

security, (e.g., MITM [13],) you should configure secure channels for your application.

In Go, you can address communication security using the crypto/tls package. With this package you will be able to do things

like: implement SSL and TLS, and enforce HSTS.

For the TLS implementation, there are some points that should be reviewed:

• Set the InsecureSkipVerify to false

• Use the correct hostname to set the server name

• Use the GetClientCertificate and its associated error code to guarantee no insecure connections are established

Communication
Security7.

https://golang.org/pkg/crypto/tls/

A
 Q

U
I

C
K

 I
N

T
R

O
 T

O
 G

O
 L

A
N

G
U

A
G

E
 S

E
C

U
R

I
T

Y
 T

O
P

I
C

S

11

Starting at password storage, when looking for a mechanism for your web application, you should consider a package that

uses the strongest algorithms, since it will impede an attacker from easily breaking a password hash from a leaked database.

You have a couple of good alternatives in Go:

• bcrypt package, implements Provos and Mazieres’ [14] bcrypt adaptive hashing algorithm

• blake2b package, implements the BLAKE2b hash algorithm defined by RFC 7693, and the extendable output function
(XOF) BLAKE2Xb that will allow you to hash, store, and validate user passwords.

If you want to encrypt some other sensitive data, the crypto package can help you with the right functions. For example, the

crypto/aes package is a great choice for a proper and reliable encryption.

Secure Data
Storage8.

https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/blake2b
https://tools.ietf.org/html/rfc7693
https://golang.org/pkg/crypto/aes/

A
 Q

U
I

C
K

 I
N

T
R

O
 T

O
 G

O
 L

A
N

G
U

A
G

E
 S

E
C

U
R

I
T

Y
 T

O
P

I
C

S

12

When developing your application, one of the most important points is the

memory management. It is very important to have a stable application with

efficient memory consumption so it does not leak memory, which eventually

could lead to an unpleasant crash of the application.

Go language uses garbage collection for memory management [15], releasing you

from that overhead, and allowing you to focus on other points of the development.

This assists in concurrent and multi-threaded programming. As objects get passed

among threads, it becomes difficult to guarantee they become freed safely. With

automatic garbage collection, concurrent coding gets easier to write.

The Go language checks for boundaries in strings, arrays, and slices [16], but when

dealing with functions that accepts a number of bytes to copy, you should perform

buffer boundary checking. In such cases, the size of the destination array must

be checked to ensure it does not write beyond the allocated space. If you do not

perform this boundary check, your Go application will Panic, and at some point,

crash. Panic is a built-in function that stops ordinary flow of control. So, always

perform boundary checks.

When Panic occurs at goroutines, you should use the built-in function Recover

to regain control of it. Recover is only useful inside deferred functions. In Go, a Defer

statement is used to defer the execution of a function until the surrounding

functions returns. Hence, if a goroutine is panicking, a call to Recover will capture

the value given to panic and resume the normal execution.

Another point in Go memory management is the usage of the compile tool. This tool

can help you performing Escape Analysis [17]. If you are concerned that a created

variable can escape out of its function or to other goroutines, you can use the go

tool compile -m to print out optimization decisions, that will include escape

analysis.

Memory
Management &
Concurrency

9.

https://github.com/golang/go/wiki/PanicAndRecover
https://gobyexample.com/defer

A
 Q

U
I

C
K

 I
N

T
R

O
 T

O
 G

O
 L

A
N

G
U

A
G

E
 S

E
C

U
R

I
T

Y
 T

O
P

I
C

S

13

When your application is built, and you’ve followed the security points above to properly secure it, you will be one step

closer to a proper security-maturity level. However, you could still leave everything at risk if you do not properly configure

the system security that will maintain your web application.

In Go and in other technologies, you should always keep things updated. So, a starting point is to always use the latest

version for the whole project, external packages, and frameworks.

A common vulnerability that happens from an insecure system configuration is directory listing, whereas its names

suggests, it will allow a non-authorized user to view sensitive files and navigate through directories. To address this issue,

you should make sure that the directory does not contains sensitive information, in addition to restricting directory listings.

In this case, the mitigation for this vulnerability is independent to the language used, therefore, the best way to address it is

to follow some of the proposed countermeasures:

• Disable directory listings in your web application

• Restrict access to unnecessary directories and files

• Create an index file for each directory

System
Configuration10.

A
 Q

U
I

C
K

 I
N

T
R

O
 T

O
 G

O
 L

A
N

G
U

A
G

E
 S

E
C

U
R

I
T

Y
 T

O
P

I
C

S

14

Associated with this, there is also the Directory Traversal or Path

Traversal, which allows attackers to access restricted directories

and execute commands outside of the web server’s root

directory. To address this in Go, you can benefit from the http

package, specifically the HandleFunc and Handler functions,

using them to block a directory, or limiting it to an allowed map.

It is also important to remove or disable functionalities that

you don’t need that could help an attacker compromise your

application. Disabling debugging modes, removing headers that

disclosure sensitive information (like webserver, framework,

programming language, or operating system versions) etc.,

will keep your application safer.

In this short summary, we’ve reviewed some key points of web application security

for applications written in the Go Language. The main objective of this summary

was to walk you through some key points to help you address the most common

web application vulnerabilities and keep your Go application safe from harm. It is

intended that implementation details are to be further investigated by following the

pointed references at the end of this summary. As stated in the beginning, this is a

summary of the Go Language Guide – Web Application Secure Coding Practices,

and therefore, this summary should be kept on-hand when following that Guide.

Disclaimer: As a final note, please remember that no system or programming

language is 100% secure, and one needs to be constantly reviewing, testing, and

carefully configuring the application to stay ahead of malicious actors. However,

if you follow these principles, you should be Good to Go!

Summary

https://golang.org/pkg/net/http/#ServeMux.HandleFunc
https://golang.org/pkg/net/http/#ServeMux.Handler
https://info.checkmarx.com/hubfs/Ebooks/The_Go_Language_Guide_Web_Application_Secure_Coding_Practices_OWASP_08.17.20.pdf

A
 Q

U
I

C
K

 I
N

T
R

O
 T

O
 G

O
 L

A
N

G
U

A
G

E
 S

E
C

U
R

I
T

Y
 T

O
P

I
C

S

15

[1] OWASP Input Validation Cheat Sheet,
Available at: https://www.owasp.org/index.php/Input_
Validation_Cheat_Sheet

[2] OWASP Cross-Site Scripting,
Available at: https://www.owasp.org/index.php/Cross-
site_Scripting_(XSS)

[3] OWASP SQL Injection
Available at: https://www.owasp.org/index.php/SQL_
Injection

[4] OWASP SQLi Prevention
Available at: https://www.owasp.org/index.php/SQL_
Injection_Prevention_Cheat_Sheet

[5] ReDoS
Available at: https://www.owasp.org/index.php/Regular_
expression_Denial_of_Service_-_ReDoS

[6] ReDoS in Go
Available at: https://www.checkmarx.com/2018/05/07/
redos-in-go/

[7] OWASP CSRF
Available at: https://www.owasp.org/index.php/Cross-Site_
Request_Forgery_(CSRF)

[8] OWASP CSRF Prevention
Available at: https://www.owasp.org/index.php/Cross-Site_
Request_Forgery_(CSRF)_Prevention_Cheat_Sheet

[9] OWASP Security Headers
Available at: https://www.owasp.org/index.php/OWASP_
Secure_Headers_Project#tab=Headers

[10] OWASP Content Security Policy
Available at: https://www.owasp.org/index.php/
Content_Security_Policy

[11] An Introduction to Content Security Policy
Available at: https://www.html5rocks.com/en/tutorials/
security/content-security-policy/

[12] OWASP Session Management
Available at: https://www.owasp.org/index.php/
Session_Management_Cheat_Sheet

[13] OWASP MITM attack
Available at: https://www.owasp.org/index.php/Man-
in-the-middle_attack

[14] A Future-Adaptable Password Scheme,
Niels Provos and David Mazieres
Available at: https://www.usenix.org/legacy/event/
usenix99/provos/provos.pdf

[15] Getting to Go: The Journey of Go’s
Garbage Collector
Available at: https://blog.golang.org/ismmkeynote

[16] Index expressions
Available at: https://golang.org/ref/spec#Index_
expressions

[17] Escape analysis
Available at: https://en.wikipedia.org/wiki/Escape_
analysis

References

https://www.owasp.org/index.php/Input_Validation_Cheat_Sheet
https://www.owasp.org/index.php/Input_Validation_Cheat_Sheet
https://www.owasp.org/index.php/Input_Validation_Cheat_Sheet
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://www.owasp.org/index.php/SQL_Injection
https://www.owasp.org/index.php/SQL_Injection
https://www.owasp.org/index.php/SQL_Injection
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Regular_expression_Denial_of_Service_-_ReDoS
https://www.owasp.org/index.php/Regular_expression_Denial_of_Service_-_ReDoS
https://www.owasp.org/index.php/Regular_expression_Denial_of_Service_-_ReDoS
https://www.checkmarx.com/2018/05/07/redos-in-go
https://www.checkmarx.com/2018/05/07/redos-in-go
https://www.checkmarx.com/2018/05/07/redos-in-go
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)

https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)

https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)

https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet

https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet

https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet

https://www.owasp.org/index.php/OWASP_Secure_Headers_Project#tab=Headers
https://www.owasp.org/index.php/OWASP_Secure_Headers_Project#tab=Headers
https://www.owasp.org/index.php/OWASP_Secure_Headers_Project#tab=Headers
https://www.owasp.org/index.php/Content_Security_Policy
https://www.owasp.org/index.php/Content_Security_Policy
https://www.owasp.org/index.php/Content_Security_Policy
https://www.html5rocks.com/en/tutorials/security/content-security-policy

https://www.html5rocks.com/en/tutorials/security/content-security-policy

https://www.html5rocks.com/en/tutorials/security/content-security-policy

https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
https://www.owasp.org/index.php/Man-in-the-middle_attack
https://www.owasp.org/index.php/Man-in-the-middle_attack
https://www.owasp.org/index.php/Man-in-the-middle_attack
https://www.usenix.org/legacy/event/usenix99/provos/provos.pdf
https://www.usenix.org/legacy/event/usenix99/provos/provos.pdf
https://www.usenix.org/legacy/event/usenix99/provos/provos.pdf
https://www.usenix.org/legacy/event/usenix99/provos/provos.pdf
https://blog.golang.org/ismmkeynote
https://blog.golang.org/ismmkeynote
https://blog.golang.org/ismmkeynote
https://golang.org/ref/spec#Index_expressions
https://golang.org/ref/spec#Index_expressions
https://golang.org/ref/spec#Index_expressions
https://en.wikipedia.org/wiki/Escape_analysis
https://en.wikipedia.org/wiki/Escape_analysis
https://en.wikipedia.org/wiki/Escape_analysis

