

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.10

1.11

1.12

Table	of	Contents
Introduction

M1:	Improper	Platform	Usage

M2:	Insecure	Data	Storage

M3:	Insecure	Communication

M4:	Insecure	Authentication

M5:	Insufficient	Cryptography

M6:	Insecure	Authorization

M7:	Client	Code	Quality

M8:	Code	Tampering

M9:	Reverse	Engineering

M10:	Extraneous	Functionality

Final	Notes

2www.checkmarx.com

Introduction
Kotlin	Guide - Mobile Application Secure	Coding	Practices	is	a	book	written	for	anyone	using	Kotlin	for
mobile	development.

This	book	is	a	collaborative	effort	started	by	Checkmarx	Security	Research	Team,	open	sourced	for
community	contributions.	Its	structure	covers	the	OWASP	Mobile	Top	10	2016	intended	to	help
developers	avoid	common	mistakes.

Kotlin	is	a	statically	typed	programming	language	for	modern	multiplatform	applications	100%
interoperable	with	Java™	and	Android™,	primarily	developed	by	the	team	at	JetBrains.	It	is	now	fully
supported	by	Google	as	an	alternative	to	the	Android	standard	Java	compiler.

Why	This	Book
Since	May	7th	2019,	Kotlin	is	Google's	preferred	language	for	Android	app	development.	So,	it	is
important	for	developers	to	familiarize	with	this	new	language.

Checkmarx	Research	Team	helps	educate	developers,	security	teams,	and	the	industry	overall	about
common	coding	errors,	and	brings	awareness	of	vulnerabilities	that	are	often	introduced	during	the
software	development	process.

The	Audience	for	this	Book
The	primary	audience	of	the	Kotlin Guide - Mobile Applications	Secure	Coding	Practices	is	Android
developers.	This	book	can still	be	used	by	penetration	testers	to	learn	how	to	identify	well-known
vulnerabilities	on	Kotlin applications.

What	You	Will	Learn
The	authors	of	this	book	mapped	the	OWASP	Mobile	Top	10	security	weaknesses	to	Kotlin	on	a
weakness-by-weakness	basis	while	providing	examples,	recommendations,	and	fixes	to	help
developers avoid	common	mistakes	and	pitfalls.	After	reading	this	book	and	referring	to	it	often,	you
will	learn	how to	ensure	you	are	developing	secure	mobile	apps	using	Kotlin.

About	Checkmarx
Checkmarx is the global leader in software security solutions for modern enterprise software
development. Checkmarx delivers the industry’s most comprehensive Software Security Platform that
unifies with DevOps and provides static and interactive application security testing, software
composition analysis and developer AppSec awareness and training programs to reduce and remediate
risk from software vulnerabilities. Checkmarx is trusted by more than 40 percent of the Fortune 100
and half of the Fortune 50, including leading organizations such as SAP, Samsung and Salesforce.com.
Learn more at www.checkmarx.com.

Introduction

3www.checkmarx.com

https://kotlinlang.org/
http://chkmrx.co/2sffXFr
https://www.owasp.org/index.php/Mobile_Top_10_2016-Top_10
https://www.jetbrains.com/

About OWASP Mobile Security Project
The	OWASP	Mobile	Security	Practices	is	a	centralized	resource	intended	to	give	developers	and
security teams	the	resources	they	need	to	build	and	maintain	secure	mobile	applications.

The	Mobile	Top	10	2016	is	the	last	edition	of	the	top	10	most	common	mobile	security	weaknesses.

OWASP	 itself	 is	 "an	 open	 community	 dedicated	 to	 enabling	 organizations	 to	 conceive,	 develop,
acquire, operate,	and	maintain	applications	 that	can	be	 trusted.	All	of	 the	OWASP	 tools,	documents,
forums,	and chapters	are	free	and	open	to	anyone	interested	in	improving	application	security".

License
This	document	is	released	under	the	Creative	Commons	Attribution-ShareAlike	4.0	International	license
(CC	BY-SA	4.0).	For	any	reuse	or	distribution,	you	must	make	clear	to	others	the	license	terms	of	this
work	https://creativecommons.org/licenses/by-sa/4.0/.

Introduction

4www.checkmarx.com

https://www.owasp.org/index.php/OWASP_Mobile_Security_Project
https://www.owasp.org/index.php/Mobile_Top_10_2016-Top_10
https://www.owasp.org/
https://creativecommons.org/licenses/by-sa/4.0/
StephenG
Comment on Text
I think we may want to remove this section, since the "How to Contribute" section was already removed from the last few pages.

M1:	Improper	Platform	Usage
From	the	Android	documentation:	"Content	providers	are	one	of	the	primary	building	blocks	of	Android
applications,	providing	content	to	applications."	Content	providers	are	mostly	used	to	share	data
between	Android	applications,	such	as	activities,	services,	or	receivers.	Content	providers	can	have
weak	permissions	or	can	be	exported	for	all	the	apps	on	the	device.	Such	misconfiguration	can	allow
the	Android	app	to	leak	the	data	used	by	the	Content	provider.

When	the	Content	provider	is	exported,	all	the	apps	can	query	the	Content	provider	to	retrieve	or
modify	the	data.	On	the	Goatlin	app,	we	can	see	that	a	Content	provider	is	defined	with	the	name
.AccountProvider		and	the	exported	tag	is	set	to	true.	Here	is	an	extract	of	the		AndroidManifest		file:

<provider

	android:name=".AccountProvider"

	android:authorities="com.cx.goatlin.accounts"

	android:enabled="true"

	android:exported="true"	/>

Looking	at	the	code	on	the		AccountProvider.kt		class,	we	can	retrieve	the	Content	URI:

companion	object	{

	private	val	AUTHORITY	=	"com.cx.goatlin.accounts"

	private	val	ACCOUNTS_TABLE	=	"Accounts"

	val	CONTENT_URI	:	Uri	=	Uri.parse("content://"	+	AUTHORITY	+	"/"	+

	ACCOUNTS_TABLE)

	private	val	DATABASE_NAME	=	"data"

}

Then,	using	the		adb		tool,	we	can	query	this	provider	and	even	insert	data.	Here	is	simple	example
allowing	a	query	to	the	provider	in	order	to	retrieve	the	accounts	stored:

$	adb	shell	content	query	--uri	content://com.cx.goatlin.accounts/Accounts

Row:	0	id=1,	username=admin,	password=admin

We	can	obtain	the	admin's	credentials	in	this	case.

Here	is	another	example	allowing	an	insertion	to	add	a	new	account	into	the	Goatlin	app:

$	adb	shell	content	insert	--uri	content://com.cx.goatlin.accounts/Accounts		--bind	username:s:kotlin	--bind	pa

ssword:s:goat

$	adb	shell	content	query	--uri	content://com.cx.goatlin.accounts/Accounts

Row:	0	id=1,	username=admin,	password=admin

Row:	1	id=2,	username=kotlin,	password=goat

Below	you	can	see	this	in action:

M1:	Improper	Platform	Usage

5www.checkmarx.com

https://developer.android.com/reference/android/content/ContentProvider
https://github.com/Checkmarx/Goatlin

Video	link

In	the	same	manner,	the	app	leaks	a	Content	provider	named		.NotesProvider		for	the	notes	created	by
the	user.

Here	is	the	definition	of	the	Content	provider	in	the	Android	manifest:

<provider

	android:name=".NotesProvider"

	android:authorities="com.cx.goatlin.notes"

	android:enabled="true"

	android:exported="true"></provider>

As	shown	previously,	we	can	obtain	the	Content	URI	by	analyzing	the		NotesProvider		class:

companion	object	{

	private	val	AUTHORITY	=	"com.cx.goatlin.notes"

	private	val	NOTES_TABLE	=	"Notes"

	val	CONTENT_URI	:	Uri	=	Uri.parse("content://"	+	AUTHORITY	+	"/"	+

	NOTES_TABLE)

	private	val	DATABASE_NAME	=	"data"

}

Again,	with	the		adb		tool,	we	can	query	this	provider	and	retrieve	the	notes	stored:

$	adb	shell	content	query	--uri	content://com.cx.goatlin.notes/Notes

Row:	0	id=1,	title=whvw,	content=whvw,	createdAt=2019-01-07	14:58:32,	owner=1

For	this	provider,	we	can	observe	that	the	notes	are	not	stored	in	clear	text	(the	title	and	content	of	the
note	should	be	"test").	This	encryption	mechanism	is	further	analyzed	in	the	M5:	Insufficient
Cryptography	section.

This	issue	was	fixed	on	Goatlin:	you	can	find	it	on	feature/m1-improper-platform-usage	branch.

More	information	about	how	to	test	improper	platform	usage	can	be	found	on	the	OWASP	Mobile	Testing
Guide	and	especially	on	the	Testing	Platform	Interaction	section.

M1:	Improper	Platform	Usage

6www.checkmarx.com

http://youtube.com/watch?v=U5czs2s8Ifc
https://github.com/Checkmarx/Goatlin
https://github.com/Checkmarx/Goatlin/tree/feature/m1-improper-platform-usage
https://www.owasp.org/index.php/OWASP_Mobile_Security_Testing_Guide
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x05h-Testing-Platform-Interaction.md

Resources

Tools
adb
apktool
jadx
jd-gui

Readings
Android	documentation:	Content	Provider
Testing	Platform	Interaction
OWASP	Mobile	Testing	Guide
OWASP	Mobile	Top	10	2016:	M1	-	Improper	Platform	Usage

M1:	Improper	Platform	Usage

7www.checkmarx.com

https://developer.android.com/studio/command-line/adb
https://github.com/skylot/jadx
http://jd.benow.ca/
https://ibotpeaches.github.io/Apktool/
https://developer.android.com/reference/android/content/ContentProvider
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x05h-Testing-Platform-Interaction.md
https://www.owasp.org/index.php/OWASP_Mobile_Security_Testing_Guide
https://www.owasp.org/index.php/Mobile_Top_10_2016-M1-Improper_Platform_Usage

M2:	Insecure	Data	Storage
The	Android	ecosystem	provides	several	ways	to	store	data	for	an	app.	The	kind	of	storage	used	by
developers	depends	on	the	kind	of	data	stored,	the	usage	of	the	data,	and	also	whether	the	data
should	be	kept	private	or	shared	to	other	apps.

The	following	solutions	are	provided	by	Android:

Internal	file	storage:	Files	stored	on	the	device	and	only	available	for	the	app.
External	file	storage:	Files	usually	stored	on	the	SD Card	(or	any	removable	device).	Files	are
available	for	everyone.
Databases:	Internal	SQLite	databases	only	available	for	the	app.
Shared	Preferences:	XML	files	mostly	used	as	key-pair	values	to	store	configuration	parameters.

Unfortunately,	it	is	very	common	to	find	sensitive	information	stored	in	clear	text.	For	instance,	it	is
frequent	to	find	API	keys,	passwords,	and Personally	Identifiable	Information	(PII)	stored	on	the	Shared
Preferences	or	databases	used	by	the	app.

In	the	case	of	the	Goatlin	app,	when	a	user	performs	a	sign	up,	the	credentials	are	stored	locally	inside
the	database.	Here	is	the	extract	of	the	SignupActivity	class	showing	the	creation	of	the	account	and
how	it	is	stored	into	the	database:

/**

* Attempts	to	create	a	new	account	on	back-end

*/

private	fun	attemptSignup()	{

	val	name:	String	=	this.name.text.toString()

	val	email:	String	=	this.email.text.toString()

	val	password:	String	=	this.password.text.toString()

	val	confirmPassword:	String	=	this.confirmPassword.text.toString()

	if	(confirmPassword	!=	password)	{

	this.confirmPassword.error	=	"Passwords	don't	match"

	this.confirmPassword.requestFocus()

	return;

	}

	val	account:	Account	=	Account(name,	email,	password)

	val	call:	Call<Void>	=	apiService.signup(account)

	call.enqueue(object:	Callback<Void>	{

	override	fun	onFailure(call:	Call<Void>,	t:	Throwable)	{

	Log.e("SingupActivity",	t.message.toString())

	}

	override	fun	onResponse(call:	Call<Void>,	response:	Response<Void>)	{

	val	emailField:	AutoCompleteTextView	=	findViewById(R.id.email)

	var	message:String	=	""

	when	(response.code())	{

	201	->	{

	if	(createLocalAccount(account))	{

	val	intent	=	Intent(this@SignupActivity,	LoginActivity::class.java)

	startActivity(intent)

	}	else	{

	message	=	"Failed	to	create	local	account"

	}

	}

	409	->	{

	message	=	"This	account	already	exists"

M2:	Insecure	Data	Storage

8www.checkmarx.com

https://developer.android.com/guide/topics/data/data-storage
https://github.com/Checkmarx/Goatlin

	emailField.error	=	message

	emailField.requestFocus()

	}

	else	->	{

	message	=	"Failed	to	create	account"

	}

	}

	}

	}

}

When	the	app	receives	a	response	from	the	back-end	with	the	HTTP	code	201,	the	function
createLocalAccount()		is	called.	As	shown	below,	this	function	only	adds	the	username	and	password	into
the	database:

/**

* Creates	local	account

*/

private	fun	createLocalAccount(account:	Account):	Boolean	{

	return	DatabaseHelper(applicationContext).createAccount(account.email,

	account.password)

}

Here	is	the	code	of	the		createAccount()		function	provided	by	the		DatabaseHelper		class:

public	fun	createAccount(username:	String,	password:	String)	:	Boolean	{

	val	db:	SQLiteDatabase	=	this.writableDatabase

	val	record:	ContentValues	=	ContentValues()

	var	status	=	true

	record.put("username",	username)	record.put("password",	password)

	try	{

	db.insertOrThrow(TABLE_ACCOUNTS,	null,	record)

	}	catch	(e:	SQLException)	{

	Log.e("Database	signup",	e.toString())

	status	=	false

	}	finally	{

	return	status

	}

}

In	the	same	manner,	we	can	observe	that	the	credentials	are	checked	locally	by	retrieving	the
credentials	stored	inside	the	database.	Here	is	an	extract	of	the		LoginActivity		class	where	the	check	is
made:

override	fun	doInBackground(vararg	params:	Void):	Boolean?	{

	if	((mUsername	==	"Supervisor")	and	(mPassword	==	"MySuperSecretPassword123!")){

	return	true

	}	else	{

	try	{

	val	account:	Account	=	DatabaseHelper(applicationContext).getAccount(mUsername)

	if	(mPassword	==	account.password)	{

	val	prefs:	SharedPreferences	=	applicationContext.getSharedPreferences(

	applicationContext.packageName,	Context.MODE_PRIVATE)

	val	editor:	SharedPreferences.Editor	=	prefs.edit()

	editor.putInt("userId",	account.id).apply()

	editor.putString("userEmail",	mUsername).apply()

	}

	return	account.id	>	-1

M2:	Insecure	Data	Storage

9www.checkmarx.com

	}	catch(e:	Exception)	{

	return	false

	}

	}

}

The	app	retrieves	the	account	stored	in	the	database	by	using	the		getAccount()		function.	If	the
password	stored	in	the	database	matches	the	password	provided	by	the	user,	the	authentication	is
successful.

An	attacker	able	to	access	the	database	of	the	app	(rooting	the	device,	backup	of	the	app,	etc.)	can
retrieve	the	credentials	of	the	different	users	using	the	app.	Using	sqlitebrowser,	it	is	easy	to	inspect
the	content	of	an	SQLite	database.	Here	is	the	content	of	the		Accounts		table	used	by	the	app:

As	discussed	before,	we	can	confirm	that	the	passwords	are	stored	in	clear	text	without	using	any
encryption	mechanism.

Resources

Tools
apktool
jadx
jd-gui
sqlitebrowser

Readings
Android	documentation:	Data	and	file	storage	overview
OWASP	Mobile	Top	10	2016:	M2	-	Insecure	Data	Storage
OWASP	Mobile	Security	Testing	guide	-	Test	Data	Storage

M2:	Insecure	Data	Storage

10www.checkmarx.com

https://sqlitebrowser.org/
https://github.com/skylot/jadx
http://jd.benow.ca/
https://ibotpeaches.github.io/Apktool/
https://sqlitebrowser.org/
https://developer.android.com/guide/topics/data/data-storage
https://www.owasp.org/index.php/Mobile_Top_10_2016-M2-Insecure_Data_Storage
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x05d-Testing-Data-Storage.md

M3:	Insecure	Communication
Currently,	most	mobile	applications	exchange	data	in	a	client-server	fashion	at	some	point.	When	these
communications	happen,	data	traverses	either	the	mobile	carrier's	network	or	between	some	Wi-Fi
network	and	the	internet.

Although	exploiting	the	mobile	carrier's	network	is	not	an	impossible	task,	exploiting	a	Wi-Fi	network	is
usually	much	easier.	If	communications	lack	SSL/TLS,	then	an	adversary	will	be	able	not	only	to	steal
the	data,	but	also	to	execute	Man-in-the-Middle	(MitM)	attacks.

The	following	video	demonstrates	Insecure	Communications	exploitation	on	Kotlin	Goat	mobile
application.	The	movie	shows	network	monitoring,	what	gives	an	adversary	access	to	exchanged	data
nevertheless,	due	to	insecure	communication,	Man-in-the-Middle	(MitM)	would	also	be	possible.

Video	link

Now	that	we	have	seen	the	exploitation	taking	place,	it's	time	to	go	back	to	the	application	source	code
and	fix	this	issue.	We	will	add	SSL/TLS	to	all	client-server	communications	and	also	implement
Certificate	Pinning	to	remove	the	"conference	of	trust"	to	no	longer	depend	on	Certificate	Authorities	or
third-party	agents	regarding	decisions	on	a	server's	identity.

To	enable	SSL/TLS,	we	will	need	certificates	to	be	available	in	the	server.	Nowadays	you	can	get	free
certificates	with	Let's	Encrypt	-	a	free,	automated	and	open	Certificate	Authority.	You'll	get	the
certificates	deployed	easily	by	following	the	documentation.

On	Goatlin, we'll	go	with	a	self-signed	certificate.	While	this	is	a	common	practice	during	the
development	stage,	it	is	not	recommended	for	production	systems.	How	to	generate	the	certificate	is
out	of	scope	for	this	guide.

With	the	certificate	in	hand,	we	should	make	a	few	changes	on	our	back-end	API	to	make	it	use	HTTPS
instead	of	HTTP:

Put		server.key		and		server.crt		under	the		ssl		directory

M3:	Insecure	Communication

11www.checkmarx.com

https://github.com/Checkmarx/Goatlin
http://youtube.com/watch?v=0onwBnAvWI4
https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning
https://letsencrypt.org/
https://letsencrypt.org/docs/
https://github.com/Checkmarx/Goatlin

Replace		http		package	with		https		one
Load		server.key		and		server.crt

const	https	=	require('https');

const	fs	=	require('fs');

const	path	=	require('path');

//	...

/**

* Create	HTTP	server.

*/

const	sslDirectory	=	path.join(__dirname,'..','ssl');

const	privateKey	=	fs.readFileSync(path.join(sslDirectory,	'server.key'),	'utf8');

const	certficate	=	fs.readFileSync(path.join(sslDirectory,	'server.crt'),	'utf8');

const	credentials	=	{key:	privateKey,	cert:	certficate};

var	server	=	https.createServer(credentials,	app);

//	...

The	following	command	line	outputs	our	certificate	fingerprint	so	that	we	can	pin	it	on	Goatlin:

openssl	x509	-in	server.crt	-pubkey	-noout	|	openssl	pkey	-pubin	-outform	der	|	openssl	dgst	-sha256	-binary	|	

openssl	enc	-base64

Now	we	have	to	modify	the		create		method	of	our	API	service		Client		interface	as	shown	below:

interface	Client	{

	@POST("accounts")

	fun	signup	(@Body	data:	Account):	Call<Void>

	companion	object	{

	fun	create():	Client	{

	val	certificatePinner	=	CertificatePinner.Builder()

	.add("192.169.1.87:8080",	"sha256/5Kl14sIBRoArZ8ujwNLWoLOI1QmsvE58nmXTO/9GSJw=")

	.build()

	val	client:	OkHttpClient	=	OkHttpClient.Builder()

	.certificatePinner(certificatePinner)

	.build()

	val	retrofit	=	Retrofit.Builder()

	.addCallAdapterFactory(RxJava2CallAdapterFactory.create())

	.addConverterFactory(GsonConverterFactory.create())

	.baseUrl("https://192.168.1.87:8080")

	.client(client)

	.build()

	return	retrofit.create(Client::class.java)

	}

	}

}

You	can	test	Certificate	Pinning	by	switching	to	feature/m3-insecure-communication	branch.	Replacing
the	back-end	API	certificates	or	the	fingerprint	on	Goatlin	source	code	will	break	the	signup	feature.

Resources

Tools

M3:	Insecure	Communication

12www.checkmarx.com

https://github.com/Checkmarx/Goatlin
https://github.com/Checkmarx/Goatlin/tree/feature/m3-insecure-communication
https://github.com/Checkmarx/Goatlin

Wireshark
Burp	Suite
Let's	Encrypt
OkHttp

Readings
Certificate	Pinning
OkHttp	Certificate	Pinning
OWASP	Mobile	Top	10	2016:	M3	-	Insecure	Communication

M3:	Insecure	Communication

13www.checkmarx.com

https://www.wireshark.org/
https://portswigger.net/
https://letsencrypt.org/
https://github.com/square/okhttp
https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning
https://github.com/square/okhttp/wiki/HTTPS#certificate-pinning
https://www.owasp.org/index.php/Mobile_Top_10_2016-M3-Insecure_Communication

M4:	Insecure	Authentication
Weak	authentication	for	mobile	applications	is	fairly	prevalent	due	to	mobile	devices'	input	factor:	4-
digit	PINs	are	a	great	example	of	it.	Either	a	weak	password	policy	due	to	usability	requirements	or
authentication	based	on	features	like	TouchID,	make	your	application	vulnerable.	Contrary	to	what	you
may	think,	unlike	passwords,	you	may	be	forced	to	give	up	your	fingerprint.

Unless	there's	a	functional	requirement,	mobile	applications	do	not	require	a	back-end	server	to	which
they	should	be	authenticated	in	real-time.	Even	when	such	back-end	servers	exist,	usually	users	are
not	required	to	be	online	at	all	times.	This	poses	a	great	challenge	on	mobile	applications'
authentication.	Whenever	authentication	has	to	happen	locally,	then	it	can	be	bypassed	on	jailbroken
devices	through	runtime	manipulation	or	modification	of	the	binary.

Insecure	Authentication	is	not	only	about	guessable	passwords,	default	user	accounts,	or	data
breaches.	Under	certain	circumstances,	the	authentication	mechanism	can	also	be	bypassed	and	the
system	will	fail	to	identify	the	user	and	log	its	(malicious)	activity.	Usually	in	this	scenario,	users	will
gain	access	to	sensitive	functionalities,	since	the	system	will	also	fail	to	validate	its	role,	highlighting
problems	with	the	authorization	controls	as	well.

The	movie	below	shows	an	Insecure	Authentication	exploitation	on	Kotlin	Goat:

Video	link

Now	it	is	time	to	improve	the	application	by	establishing	a	strong	password	policy	and	storing
authentication	data	safely.	We	will	keep	authentication	data	locally,	since	not	all	applications	have	a
back-end	server	to	handle	it.	When	such	a	back-end	exists,	the	password	policy	should	be	the	same	on
both	sides.	Optionally,	password	"strength"	validation	can	be	delegated	to	the	back-end.

The	PasswordHelper	object	implements	OWASP	recommendations	for	Password	Strength:

package	com.cx.goatlin.helpers

object	PasswordHelper	{

M4:	Insecure	Authentication

14www.checkmarx.com

https://github.com/Checkmarx/Goatlin
http://youtube.com/watch?v=qJO2A2uox1E
https://github.com/Checkmarx/Goatlin/blob/feature/m4-insecure-authentication/packages/clients/android/app/src/main/java/com/cx/goatlin/helpers/PasswordHelper.kt
https://www.owasp.org/index.php/Authentication_Cheat_Sheet#Implement_Proper_Password_Strength_Controls

	/**

* Performs	given	password	validation	according	to	OWASP	proper	password	strength

* @link	https://www.owasp.org/index.php/Authentication_Cheat_Sheet#Implement_Proper_Password_Strength_Cont

rols

	*/

	fun	strength	(password:	String):	Boolean	{

	var	complexityRulesMatches:	Int	=	0

	if	(!length(password))	{

	return	false

	}

	//	Password	must	meet	at	least	3	out	of	the	following	4	complexity	rules

	if	(hasAtLeastOneUppercaseLetter(password))	{

	complexityRulesMatches++

	}

	if	(hasAtLeastOneLowercaseLetter(password))	{

	complexityRulesMatches++

	}

	if	(hasAtLeastOneDigit(password))	{

	complexityRulesMatches++

	}

	if	(hasAtLeastOneSpecialChar(password))	{

	complexityRulesMatches++

	}

	if	(complexityRulesMatches	<	3)	{

	return	false

	}

	//

	if	(!noMoreThanTwoIdenticalCharsInARow(password))	{

	return	false

	}

	return	true

	}

	//	...

}

PasswordHelper.strength()		is	then	called	from		signupAttempt()		on	Goatlin		SignupActivity		(source):

package	com.cx.goatlin

//	...

class	SignupActivity	:	AppCompatActivity()	{

	//	...

	private	fun	attemptSignup()	{

	val	name:	String	=	this.name.text.toString()

	val	email:	String	=	this.email.text.toString()

	val	password:	String	=	this.password.text.toString()

	val	confirmPassword:	String	=	this.confirmPassword.text.toString()

	//	test	password	strength

	if	(!PasswordHelper.strength(password))	{

	this.password.error	=	"""|Weak	password.	Please	use:

	|*	both	upper	and	lower	case	letters

	|*	numbers

	|*	special	characters	(e.g.	!"#$%&')

	|*	from	10	to	128	characters	sequence""".trimMargin()

	this.password.requestFocus()

	return;

	}

	//	...

M4:	Insecure	Authentication

15www.checkmarx.com

https://github.com/Checkmarx/Goatlin/blob/feature/m4-insecure-authentication/packages/clients/android/app/src/main/java/com/cx/goatlin/SignupActivity.kt#L42

	}

	//	...

}

Although	the	passwords	are	now	stronger,	they're	still	stored	as	clear	text	on	a	database.	Someone
with	access	to	the	device	is	still	able	to	retrieve	and	manipulate	database	records.	To	address	this
issue,	we	will	store	a	salted	version	of		username		and		password	.

In	the	case	of	password	storage,	OWASP	recommends	the	following	algorithms:	bcrypt,	PDKDF2,	Argon2
and	scrypt.	These	can	enable	hashing	and	salting	passwords	in	a	robust	way.

We'll	use		bcrypt	,	which	should	be	satisfactory	for	most	situations.	The	advantages	of		bcrypt		is	that	it's
simpler	to	use.	Therefore,	it	is	less	error-prone.

After	adding	jBCrypt	as	a	dependency	to	have	access	to	a		bcrypt		implementation,	we	just	need	to
make	two	small	changes	to	Goatlin.	First	is	the		attemptSignup()		method	of		SignupActivity		so	that
passwords	are	stored	as	a	salted	hash	(source):

package	com.cx.goatlin

//	...

class	SignupActivity	:	AppCompatActivity()	{

	//	...

	/**

* Attempts	to	create	a	new	account	on	back-end

*/

private	fun	attemptSignup()	{

	//...

	//	hashing	password

	val	hashedPassword:	String	=	BCrypt.hashpw(password,	BCrypt.gensalt())

	val	account:	Account	=	Account(name,	email,	hashedPassword)

	//	...

	}

}

And	the	second	one	is	the		UserLoginTask			doInBackground()		method	to	compare	a	provided	password	with
the	stored	one	using		Bcrypt.checkpw()		method	(source):

package	com.cx.goatlin

//	...

class	LoginActivity	:	AppCompatActivity(),	LoaderCallbacks<Cursor>	{

	//	...

			inner	class	UserLoginTask	internal	constructor(private	val	mUsername:	String,	private	val	mPassword:	String

)	:	AsyncTask<Void,	Void,	Boolean>()	{

	override	fun	doInBackground(vararg	params:	Void):	Boolean?	{

	if	((mUsername	==	"Supervisor")	and	(mPassword	==	"MySuperSecretPassword123!")){

	return	true

	}

	else	{

	val	account:Account	=	DatabaseHelper(applicationContext).getAccount(mUsername)

	if	(BCrypt.checkpw(mPassword,	account.password))	{

	//	...

	}

	//	...

	}

	}

	}

}

Keep	in	mind	that	this	is	just	a	brief	overview	of	Insecure	Authentication.	Especially	if	you're	doing	local
authentication,	we	highly	recommend	that	you	carefully	read	sections	M8:	Code	Tampering	and	M9:
Reverse	Engineering.

M4:	Insecure	Authentication

16www.checkmarx.com

https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet#Leverage_an_adaptive_one-way_function
https://en.wikipedia.org/wiki/Bcrypt
https://en.wikipedia.org/wiki/PBKDF2
https://en.wikipedia.org/wiki/Argon2
https://en.wikipedia.org/wiki/Scrypt
http://www.mindrot.org/projects/jBCrypt/
https://github.com/Checkmarx/Goatlin
https://github.com/Checkmarx/Goatlin/blob/feature/m4-insecure-authentication/packages/clients/android/app/src/main/java/com/cx/goatlin/SignupActivity.kt#L58
https://github.com/Checkmarx/Goatlin/blob/feature/m4-insecure-authentication/packages/clients/android/app/src/main/java/com/cx/goatlin/LoginActivity.kt#L225

Resources

Tools
jBCrypt

Reading
OWASP	Authentication	Cheat	Sheet:	Implement	Proper	Password	Strength	Controls
BCrypt
PBKDF2
Argon2
Scrypt
OWASP	Mobile	Top	10	2016:	M4	-	Insecure	Authentication

M4:	Insecure	Authentication

17www.checkmarx.com

http://www.mindrot.org/projects/jBCrypt/
https://www.owasp.org/index.php/Authentication_Cheat_Sheet#Implement_Proper_Password_Strength_Controls
https://en.wikipedia.org/wiki/Bcrypt
https://en.wikipedia.org/wiki/PBKDF2
https://en.wikipedia.org/wiki/Argon2
https://en.wikipedia.org/wiki/Scrypt
https://www.owasp.org/index.php/Mobile_Top_10_2016-M4-Insecure_Authentication

M5:	Insufficient	Cryptography
Let's	assume	that	an	application	collects	some	Personal	Identifiable	Information	(PII)	which	should	be
stored	locally.	Due	to	data	relevance,	it	is	encrypted.	Now	let's	think	about	an	adversary	"physically
attaining"	the	mobile	device	where	such	data	is	stored.	The	adversary	will	have	access	to	all	third-party
application	directories;	therefore,	they'll	also	have	access	to	the	stored	data.	In	this	scenario,	whenever
the	adversary	is	able	to	return	the	encrypted	data	to	its	original	unencrypted	form,	your	cryptography
was	insufficient.

There	are	two	fundamental	mistakes	in	the	development	process	leading	to	Insufficient	Cryptography:
either	the	encryption/decryption	process	relies	on	a	flawless	underlying	process/library	or	the
application	may	implement	or	leverage	a	weak	encryption	algorithm.

Keep	in	mind	that	encryption	depends	on	secrets	(keys)	and	even	the	best	encryption	algorithm	will	be
useless	if	your	application	fails	to	keep	its	secrets	by	making	the	keys	available	to	the	attacker.

In	the	movie	below	you'll	see	how	Goatlin	cryptography	fails	by	enabling	the	adversary	to	get	the
unencrypted	version	of	stored	data.

Video	link

To	address	Insufficient	Cryptography,	we	will	replace	the	encryption	algorithm	by	the	AES	-	Advanced
Encrypt	Standard	(Rijndael).	As	many	other	symmetric	ciphers,	AES	can	be	implemented	in	different
modes.	In	this	case,	we	will	use	the	GCM	(Galoi	Counter	Mode).	GCM	is	preferable	to	most	popular
CBC/ECB	modes	because	the	former	is	an	authenticated	cipher	mode;	meaning	that	after	the
encryption	stage,	an	authentication	tag	is	added	to	the	ciphertext,	which	will	then	be	validated	prior	to
message	decryption	and	ensuring	the	message	has	not	been	tampered	with.

All	major	changes	were	done	in	the	CryptoHelper	class	which	was	given	two	new	methods:
createUserKey()		and		getUserKey()	.		encrypt()		and		decrypt()		methods	were	also	changed	to	receive	a
usernane		argument:

M5:	Insufficient	Cryptography

18www.checkmarx.com

https://github.com/Checkmarx/Goatlin
http://youtube.com/watch?v=FbIj2hBMeaE
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://github.com/Checkmarx/Goatlin/blob/feature/m5-insufficient-cryptography/packages/clients/android/app/src/main/java/com/cx/goatlin/helpers/CryptoHelper.kt

package	com.cx.goatlin.helpers

//	...

class	CryptoHelper	{

	companion	object	{

	fun	createUserKey(username:	String)	{	/*	...	*/	}

	private	fun	getUserKey(username:	String):	SecretKey?	{	/*	...	*/	}

	fun	encrypt(original:	String,	username:	String):	String	{	/*	...	*/	}

	fun	decrypt(message:	String,	username:	String):	String	{	/*	...	*/	}

	}

}

As	previously	stated,	encryption	depends	on	secrets	(keys),	which	should	be	handled	carefully.	In	this
case,	on	successful	signup,	a	random	key	is	created	and	persisted	in	Android	Keystore.	This	key	is	user
specific	(see	SignupActivity)	and	it	is	used	to	encrypt/decrypt	a	user's	notes	only.

Every	time	encryption/decryption	is	required,	the		username		should	be	provided	to	the	appropriate
CryptoHelper		method,	since	it	is	used	as	an	alias	to	locate	the	user's	key	in	Android	Keystore	(see
CryptoHelper.getUserKey()):

package	com.cx.goatlin.helpers

//	...

class	CryptoHelper	{

	companion	object	{

	private	fun	getUserKey(username:	String):	SecretKey?	{

	val	ks:	KeyStore	=	KeyStore.getInstance("AndroidKeyStore").apply	{

	load(null)

	}

	val	entry	=	ks.getEntry(username,	null)	as?	KeyStore.SecretKeyEntry

	//	@todo	handle	null	entry

	return	entry?.secretKey

	}

	}

}

There	is	another	implementation	detail	worth	mentioning,	since	it	may	prove	challenging.	AES	GCM
encryption	requires	an	Initialization	Vector	(IV).	By	default,	this	is	a	random	value.	The	value	used
during encryption	should	then	be	used	on	the	corresponding	decryption	operation.	Although
randomness	can be	disabled	(see		setRandomizedEncryptionRequired()),	replacing	random	IV	by	a	constant
value	will	reduce encryption	security.

In	our	implementation	we	kept	IV	random,	prepending	it	to	the	encrypted	message.	Then,	while
decrypting,	the	first	12	bytes	correspond	to	the	IV	and	the	rest	corresponds	to	the	message.	Note	that
IV	is	not	secret.

Resources

Readings
Android	Keystore	System
Using	the	Android	Keystore	system	to	store	and	retrieve	sensitive	information
Securely	Storing	Secrets	in	an	Android	Application
OWASP	Mobile	Top	10	2016:	M5	-	Insufficient	Cryptography

M5:	Insufficient	Cryptography

19www.checkmarx.com

https://developer.android.com/training/articles/keystore
https://github.com/Checkmarx/Goatlin/blob/feature/m5-insufficient-cryptography/packages/clients/android/app/src/main/java/com/cx/goatlin/SignupActivity.kt#L63
https://github.com/Checkmarx/Goatlin/blob/feature/m5-insufficient-cryptography/packages/clients/android/app/src/main/java/com/cx/goatlin/helpers/CryptoHelper.kt#L35
https://en.wikipedia.org/wiki/Initialization_vector
https://developer.android.com/reference/android/security/keystore/KeyGenParameterSpec.Builder.html#setRandomizedEncryptionRequired(boolean)
https://developer.android.com/training/articles/keystore
https://medium.com/@josiassena/using-the-android-keystore-system-to-store-sensitive-information-3a56175a454b
https://medium.com/@ericfu/securely-storing-secrets-in-an-android-application-501f030ae5a3
https://www.owasp.org/index.php/Mobile_Top_10_2016-M5-Insufficient_Cryptography

M6:	Insecure	Authorization
It	is	important	to	distinguish	between	authentication	and	authorization:	the	former	is	the	act	of
identifying	an	individual	whereas	the	latter	is	the	act	of	checking	that	the	identified	individual	has	the
necessary	permissions	to	perform	the	act.	To	exploit	Insecure	Authorization,	adversaries	usually	log	in
to	the	application	as	a	legitimate	user	first,	then	they	typically	force-browse	to	a	vulnerable	endpoint.

Because	authentication	precedes	authorization,	if	an	application	fails	to	identify	an	individual	before
making	an	API	request,	then	it	automatically	suffers	from	Insecure	Authorization.

Usually,	Insecure	Authorization	is	greatly	associated	with	IDOR	-	Insecure	Direct	Object	Reference,	but
it is	also	found	on	hidden	endpoints	that	developers	assume	will	be	accessed	only	by	someone	with
the right	role.	If	the	mobile	application	sends	the	user	role	or	permissions	to	the	back-end	as	part	of
the request,	it	is	likely	vulnerable	to	Insecure	Authorization.

The	movie	below	demonstrates	how	Insecure	Authorization	can	be	exploited	on	Goatlin.

Video	link

Insecure	Authorization	in	Goatlin	is	clearly	a	back-end	issue.	Although	API	routes	include
authentication	middleware	when	appropriate,	no	permissions	(authorization)	are	validated:

router.put('/accounts/:username/notes/:note',	auth,	async	(req,	res,	next)	=>	{

	//	...

});

router.get('/accounts/:username/notes',	auth,	async	(req,	res,	next)	=>	{

	//	...

});

In	this	case,	resources	can	be	managed	only	by	their	owner.	This	is	the	validation	that	our	authorization
middleware	will	be	responsible	for:

M6:	Insecure	Authorization

20www.checkmarx.com

https://github.com/Checkmarx/Goatlin
http://youtube.com/watch?v=vsyTMpRnFtA
https://github.com/Checkmarx/Goatlin
https://github.com/Checkmarx/Goatlin/blob/master/packages/services/api/src/routes/accounts.js#L29
https://github.com/Checkmarx/Goatlin/blob/master/packages/services/api/src/middleware/auth.js
https://github.com/Checkmarx/Goatlin/blob/feature/m6-insecure-authorization/packages/services/api/src/middleware/ownership.js

function	ownership	(req,	res,	next)	{

	if	(req.params.username	!==	req.account.username)	{

	res.statusMessage	=	"Unauthorized"

	return	res.status(403).end();

	}

	next();

}

This	is	how	API	routes	look	like	when	they	include	both	authentication	and	authorization	middlewares:

router.put('/accounts/:username/notes/:note',	[auth,	ownership],	async	(req,	res,	next)	=>	{

	//	...

});

router.get('/accounts/:username/notes',	[auth,	ownership],	async	(req,	res,	next)	=>	{

	//	...

});

Resources

Readings
Insecure	Direct	Object	Reference	Prevention	Cheat	Sheet
Testing	for	Insecure	Direct	Object	References	(OTG-AUTHZ-004)
Using	middleware	-	Express
OWASP	Mobile	Top	10	2016:	M6	-	Insecure	Authorization

M6:	Insecure	Authorization

21www.checkmarx.com

https://www.owasp.org/index.php/Insecure_Direct_Object_Reference_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Testing_for_Insecure_Direct_Object_References_(OTG-AUTHZ-004)
https://expressjs.com/en/guide/using-middleware.html
https://www.owasp.org/index.php/Mobile_Top_10_2016-M6-Insecure_Authorization

M7:	Client	Code	Quality
This	category	includes	code-level	issues	like	a	buffer	overflow	in	C,	or	a	DOM-based	XSS	in	a	Webview
mobile	app.	It's	usually	something	that	requires	code	changes	to	be	fixed,	since	it	is	caused	by	an
improper	API	or	language	constructs	usage.

Although	Client	Code	Quality	issues	are	prevalent,	the	exploitation	often	requires	low-level	knowledge.
The	typical	primary	goal	is	to	execute	foreign	code	within	the	mobile	code's	address	space.

Consistent	coding	patterns	and	coding	style	guidelines	broadly	accepted	in	the	organization	will	help	to
improve	code	quality.	Since	these	issues	are	not	easily	detected	on	code	review,	using	a	static	analysis
tool	usually	provides	the	results.	Buffer	overflows	and	memory	leaks	should	be	top	priorities	over	other
code	quality	issues	yet	to	be	resolved.

Detekt	is	one	of	such	static	code	analysis	tools	for	Kotlin	licensed	under	the	Apache	License	2.0.	It
provides	several	integration	mechanisms	such	as	a	Gradle	plugin	and	a	SonarQube	integration,	but	it
can	also	run	standalone.

Running	Detekt	on	Goatlin	source	code,	results	as	bellow:

$	java	-jar	detekt-cli/build/libs/detekt-cli-1.0.0-RC12-all.jar	-r	txt:/tmp/goatlin.txt	-i	goatlin/packages/cli

ents/android/

Overall	debt:	7h

Complexity	Report:

- 1230	lines	of	code	(loc)

- 912	source	lines	of	code	(sloc)

- 610	logical	lines	of	code	(lloc)

- 87	comment	lines	of	code	(cloc)

- 145	McCabe	complexity	(mcc)

- 47	number	of	total	code	smells

- 9	%	comment	source	ratio

- 237	mcc	per	1000	lloc

- 77	code	smells	per	1000	lloc

Project	Statistics:

- number	of	properties:	149

- number	of	functions:	75

- number	of	classes:	18

- number	of	packages:	5

- number	of	kt	files:	17

The	report	summary	highlights	several	issues	grouped	by	ruleset.	Below	are	just	the	most	relevant
issues	found:

Ruleset:	complexity	-	40min	debt

	TooManyFunctions	-	15/11	-	[DatabaseHelper]	at	goatlin/packages/clients/android/app/src/main/java/com/c

x/goatlin/helpers/DatabaseHelper.kt:16:1

	ComplexMethod	-	15/10	-	[showProgress]	at	goatlin/packages/clients/android/app/src/main/java/com/cx/goa

tlin/LoginActivity.kt:126:5

Ruleset:	exceptions	-	1h	40min	debt

	TooGenericExceptionCaught	-	[exception]	at	goatlin/packages/clients/android/app/src/main/java/com/cx/go

atlin/helpers/DatabaseHelper.kt:46:18

	TooGenericExceptionThrown	-	[installDatabaseFromAssets]	at	goatlin/packages/clients/android/app/src/mai

n/java/com/cx/goatlin/helpers/DatabaseHelper.kt:47:13

	TooGenericExceptionThrown	-	[getAccount]	at	goatlin/packages/clients/android/app/src/main/java/com/cx/g

oatlin/helpers/DatabaseHelper.kt:91:13

	TooGenericExceptionThrown	-	[getNote]	at	goatlin/packages/clients/android/app/src/main/java/com/cx/goat

lin/helpers/DatabaseHelper.kt:165:13

M7:	Client	Code	Quality

22www.checkmarx.com

https://arturbosch.github.io/detekt/
https://www.apache.org/licenses/LICENSE-2.0
https://github.com/Checkmarx/Goatlin

			TooGenericExceptionCaught	-	[e]	at	goatlin/packages/clients/android/app/src/main/java/com/cx/goatlin/Ed

itNoteActivity.kt:67:20

Ruleset:	style	-	4h	10min	debt

			MagicNumber	-	[lowerBoundary]	at	goatlin/packages/clients/android/app/src/main/java/com/cx/goatlin/help

ers/CryptoHelper.kt:12:63

			WildcardImport	-	[LoginActivity.kt]	at	goatlin/packages/clients/android/app/src/main/java/com/cx/goatli

n/LoginActivity.kt:20:1

Resources

Tools
Detekt
SonarQube

Readings
Kotlin	Coding	Conventions
Kotlin	style	guide
Idiomatic	Kotlin.	Best	Practices.
OWASP	Mobile	Top	10	2016:	M7	-	Client	Code	Quality

M7:	Client	Code	Quality

23www.checkmarx.com

https://arturbosch.github.io/detekt/
https://www.sonarqube.org/
https://kotlinlang.org/docs/reference/coding-conventions.html
https://developer.android.com/kotlin/style-guide
https://blog.philipphauer.de/idiomatic-kotlin-best-practices/
https://www.owasp.org/index.php/Mobile_Top_10_2016-M7-Poor_Code_Quality

M8:	Code	Tampering
Once	a	mobile	application	is	delivered	and	installed	on	a	device,	both	the	code	and	data	will	be
available	there.	This	gives	the	adversary	the	chance	to	directly	modify	the	code,	manipulate	memory
content,	change	or	replace	system	APIs,	or	simply	modify	application's	data	and	resources.	This	is
known	as	Code	Tampering.

Rogue	mobile	applications	play	an	important	role	in	fraud-based	attacks,	becoming	even	more
prevalent	than	malware.	Typically	attackers	exploit	code	modification	via	malicious	types	of
applications,	tricking	users	to	install	the	app	via	phishing	attacks.

Notice	that	Kotlin	has	no	advantage	over	plain	Java	when	it	comes	to	avoiding	reverse	engineering.

Technically,	all	mobile	applications	are	vulnerable	to	code	tampering,	but	some	are	historically	more
targeted	(e.g.	mobile	games	than	others.	Deciding	whether	or	not	to	address	this	risk	is	a	matter	of
business	impact	that	can	range	from	revenue	loss	to	reputational	damage.

OWASP	Reverse	Engineering	and	Code	Modification	Prevention	Project	is	a	great	reference	on	how	to
detect	and	prevent	Reverse	Engineering	and	Code	Modification.	Generally	speaking	applications	should
be	able	to	detect	at	runtime	whether	code	was	added	or	removed	based	upon	what	they	know	about
their	integrity	at	compile	time.

To	address	this	weakness	on	Goatlin	we	followed	OWASP	recommendation	on	Android	Root	detection.
The		RootDetectionHelper		class	implements	a	few	techniques	such	as:

Whether	the	kernel	was	signed	with	custom	keys	generated	by	a	third-party	developer:

private	fun	detectDeveloperBuild():	Boolean	{

	val	buildTags:	String	=	Build.TAGS

	return	buildTags.contains("test-keys")

}

OTA	certificates	are	available:

private	fun	detectOTACertificates():	Boolean	{

	val	otaCerts:	File	=	File("/etc/security/otacerts.zip")

	return	otaCerts.exists()

}

Well-known	applications	to	gain	root	access	on	Android	devices	are	installed:

private	fun	detectRootedAPKs(ctx:	Context):	Boolean	{

	val	knownRootedAPKs:	Array<String>	=	arrayOf(

	"com.noshufou.android.su",

	"com.thirdparty.superuser",

	"eu.chainfire.supersu",

	"com.koushikdutta.superuser",

	"com.zachspong.temprootremovejb",

	"com.ramdroid.appquarantine"

)

	val	pm:	PackageManager	=	ctx.packageManager

	for(uri	in	knownRootedAPKs)	{

	try	{

	pm.getPackageInfo(uri,	PackageManager.GET_ACTIVITIES)

M8:	Code	Tampering

24www.checkmarx.com

https://www.owasp.org/index.php/OWASP_Reverse_Engineering_and_Code_Modification_Prevention_Project
https://github.com/Checkmarx/Goatlin
https://github.com/Checkmarx/Goatlin/blob/feature/m8-code-tampering/packages/clients/android/app/src/main/java/com/cx/goatlin/helpers/RootDetectionHelper.kt

	return	true

	}	catch	(e:	PackageManager.NameNotFoundException)	{

	//	application	is	not	installed

	}

	}

	return	false

}

su		binary	is	available:

private	fun	detectForSUBinaries():	Boolean	{

		var	suBinaries:	Array<String>	=	arrayOf(

	"/system/bin/su",

	"/system/xbin/su",

	"/sbin/su",

	"/system/su",

	"/system/bin/.ext/.su",

	"/system/usr/we-need-root/su-backup",

	"/system/xbin/mu"

)

	for	(bin	in	suBinaries)	{

	if	(File(bin).exists())	{

	return	true

	}

	}

	return	false

}

Attempt	to	run		su		and	check	the	id	of	current	user:

To	prevent	the	application	to	run	on	a	Rooted	environment,	the		RootDetectionHelper.check()		method,
which	combines	all	the	described	techniques,	is	called	on	our	main	activity	(Login).	If	a	Rooted
environment	is	detected,	then	the	user	is	presented	a	dialog	and	the	application	is	forced	to	close:

package	com.cx.goatlin

//	...

class	LoginActivity	:	AppCompatActivity(),	LoaderCallbacks<Cursor>	{

	//	...

	override	fun	onCreate(savedInstanceState:	Bundle?)	{

	super.onCreate(savedInstanceState)

	setContentView(R.layout.activity_login)

	if	(RootDetectionHelper.check(applicationContext))	{

	forceCloseApp()

	}

	//		...

	}

	//	...

	private	fun	forceCloseApp()	{

	val	dialog:	AlertDialog.Builder	=	AlertDialog.Builder(this)

	dialog

	.setMessage("The	application	can	not	run	on	rooted	devices")

	.setCancelable(false)

	.setPositiveButton("Close	Application",	DialogInterface.OnClickListener	{

	_,	_	->	finish()

	})

	val	alert:	AlertDialog	=	dialog.create()

	alert.setTitle("Unsafe	Device")

	alert.show()

M8:	Code	Tampering

25www.checkmarx.com

	}

	//...

}

Resources

Readings
OWASP	Reverse	Engineering	and	Code	Modification	Prevention	Project
Android	Root	Detection	Techniques
OWASP	Mobile	Top	10	2016:	M8	-	Code	Tampering

M8:	Code	Tampering

26www.checkmarx.com

https://www.owasp.org/index.php/OWASP_Reverse_Engineering_and_Code_Modification_Prevention_Project
https://blog.netspi.com/android-root-detection-techniques/
https://www.owasp.org/index.php/Mobile_Top_10_2016-M8-Code_Tampering

M9:	Reverse	Engineering
One	of	the	first	steps	when	performing	security	assessments	on	Android	applications	is	to	perform
static	analysis	of	the	app	in	order	to	understand	its	internals	such	as:

How	is	it	working?
What	kind	of	communications	are	established?
Which	libraries	are	used?

Several	tools	are	available	to	perform	this	task	such	as	apktool,	jadx	or	jd-gui.

Apktool	is	a	decompiling	tool,	allowing	to	obtain	the	smali	bytecode	of	the	app,	which	is	executed	by
the	Dalvik	virtual	machine.	The	code	obtained	is	very	low	level,	but	it	permits	a	deep	overview	of	the
app	internals.	Here	is	an	example	of	smali	bytecode:

#	static	fields

.field	static	final	synthetic	$$delegatedProperties:[Lkotlin/reflect/KProperty;

#	instance	fields

.field	private	_$_findViewCache:Ljava/util/HashMap;

.field	private	final	apiService$delegate:Lkotlin/Lazy;

.field	private	listView:Landroid/widget/ListView;

#	direct	methods

.method	static	constructor	<clinit>()V

	.locals	5

	const/4	v0,	0x1

	new-array	v0,	v0,	[Lkotlin/reflect/KProperty;

	new-instance	v1,	Lkotlin/jvm/internal/PropertyReference1Impl;

	const-class	v2,	Lcom/cx/goatlin/HomeActivity;

	invoke-static	{v2},	Lkotlin/jvm/internal/Reflection;->getOrCreateKotlinClass(Ljava/lang/Class;)Lkotlin/refl

ect/KClass;

	move-result-object	v2

	const-string	v3,	"apiService"

	const-string	v4,	"getApiService()Lcom/cx/goatlin/api/service/Client;"

	invoke-direct	{v1,	v2,	v3,	v4},	Lkotlin/jvm/internal/PropertyReference1Impl;-><init>(Lkotlin/reflect/KDecla

rationContainer;Ljava/lang/String;Ljava/lang/String;)V

	invoke-static	{v1},	Lkotlin/jvm/internal/Reflection;->property1(Lkotlin/jvm/internal/PropertyReference1;)Lk

otlin/reflect/KProperty1;

	move-result-object	v1

	check-cast	v1,	Lkotlin/reflect/KProperty;

	const/4	v2,	0x0

	aput-object	v1,	v0,	v2

	sput-object	v0,	Lcom/cx/goatlin/HomeActivity;->$$delegatedProperties:[Lkotlin/reflect/KProperty;

	return-void

.end	method

In	order	to	obtain	Java	code,	an	attacker	can	use	jadx	or	jd-gui	to	decompile	the	app.	The	video	below
demonstrates	it	using	jadx	on	Kotlin	Goat

M9:	Reverse	Engineering

27www.checkmarx.com

https://github.com/skylot/jadx
http://jd.benow.ca/
https://ibotpeaches.github.io/Apktool/
http://jd.benow.ca/
https://ibotpeaches.github.io/Apktool/
http://jd.benow.ca/
https://github.com/Checkmarx/Goatlin

Video	link

As	you	can	see,	there	is	no	obfuscation	at	all	on	the	Goatlin.	An	attacker	is	able	to	easily	analyze	the
app	in	order	to	understand	the	inner	mechanisms.

In	order	to	slow	down	the	process	of	reverse	engineering,	developers	use	various	techniques	to
obfuscate	the	code,	such	as	renaming	the	variables	and	name	functions	with	weird	names	or	using	a
non-Latin	charset.	Here	is	an	example	where	all	the	variables	and	method	names	were	renamed:

M9:	Reverse	Engineering

28www.checkmarx.com

http://youtube.com/watch?v=8b882SulnQA
https://github.com/Checkmarx/Goatlin

The	most	well-known	tool	to	perform	code	obfuscation	is	Proguard.	Quoting	Wikipedia:	"ProGuard	is	an
open	source	command-line	tool	that	shrinks,	optimizes	and	obfuscates	Java	code.	It	is	able	to	optimize
bytecode	as	well	as	detect	and	remove	unused	instructions."

The	Android	documentation	provides	guidance	on	how	to	shrink	your	code	and	resources.	In	this	article,
you	can	find	explanations	on	how	to	enable	Proguard	with	Android	Studio.

Resources

Tools
apktool
jadx
jd-gui
Proguard

Readings
Android	documentation:	Shrink	your	code	and	resources

M9:	Reverse	Engineering

29www.checkmarx.com

https://www.guardsquare.com/en/products/proguard
https://developer.android.com/studio/build/shrink-code
https://medium.com/@maheshwar.ligade/enabling-proguard-for-android-98e2b19e90a4
https://github.com/skylot/jadx
http://jd.benow.ca/
https://ibotpeaches.github.io/Apktool/
https://www.guardsquare.com/en/products/proguard
https://developer.android.com/studio/build/shrink-code

Enabling	Proguard	for	Android
OWASP	Mobile	Top	10	2016:	M9	-	Reverse	Engineering

M9:	Reverse	Engineering

30www.checkmarx.com

https://medium.com/@maheshwar.ligade/enabling-proguard-for-android-98e2b19e90a4
https://www.owasp.org/index.php/Mobile_Top_10_2016-M9-Reverse_Engineering

M10:	Extraneous	Functionality
As	the	name	suggests,	extraneous	functionality	are	functions	or	secrets	hidden	inside	the	app.	Those
functionalities	allow	an	attacker	to	perform	unintended	actions	such	as:

Accessing	administrative	or	debug	functions
Retrieving	hidden	secrets	(API	keys,	account	credentials,	personal	information,	etc.)
Discovering	hidden	back-end	endpoints

In	the	case	of	the	Goatlin	app,	a	backdoor	account	is	hardcoded	into	the	code	as	shown	below:

inner	class	UserLoginTask	internal	constructor(private	val	mUsername:	String,

	private	val	mPassword:	String)	:	AsyncTask<Void,	Void,	Boolean>()	{

	override	fun	doInBackground(vararg	params:	Void):	Boolean?	{

	if	((mUsername	==	"Supervisor")	and	(mPassword	==	"MySuperSecretPassword123!")){

	return	true

	}

	else	{

	val	account:Account	=	DatabaseHelper(applicationContext).getAccount(mUsername)

	if	(mPassword	==	account.password)	{

	//	...

	}

	//	...

	}

	//	...

	}

	//	...

}

When	performing	static	analysis	using	apktool,	jadx,	or	jd-gui,	an	attacker	is	able	to	retrieve	those
credentials	and	then	use	them	to	obtain	access	to	the	application.

Using	apktool,	it	is	possible	to	discover	those	credentials.	On	the		LoginActivity$UserLoginTask.smali		file,	an
attacker	can	identify	the	hardcoded	account:

#	virtual	methods

.method	protected	varargs	doInBackground([Ljava/lang/Void;)Ljava/lang/Boolean;

	.locals	7

	.param	p1,	"params"	 	#	[Ljava/lang/Void;

	.annotation	build	Lorg/jetbrains/annotations/NotNull;

	.end	annotation

	.end	param

	.annotation	build	Lorg/jetbrains/annotations/Nullable;

	.end	annotation

	const-string	v0,	"params"

	invoke-static	{p1,	v0},	Lkotlin/jvm/internal/Intrinsics;->checkParameterIsNotNull(Ljava/lang/Object;Ljava/l

ang/String;)V

	.line	218

	iget-object	v0,	p0,	Lcom/cx/goatlin/LoginActivity$UserLoginTask;->mUsername:Ljava/lang/String;

	const-string	v1,	"Supervisor"

	invoke-static	{v0,	v1},	Lkotlin/jvm/internal/Intrinsics;->areEqual(Ljava/lang/Object;Ljava/lang/Object;)Z

	move-result	v0

	iget-object	v1,	p0,	Lcom/cx/goatlin/LoginActivity$UserLoginTask;->mPassword:Ljava/lang/String;

	const-string	v2,	"MySuperSecretPassword123!"

	invoke-static	{v1,	v2},	Lkotlin/jvm/internal/Intrinsics;->areEqual(Ljava/lang/Object;Ljava/lang/Object;)Z

	move-result	v1

Another	way	is	to	use	the	jadx	tool.	Then,	when	looking	at	the		LoginActivity		class,	we	can	find	the
following	decompiled	code:

M10:	Extraneous	Functionality

31www.checkmarx.com

https://github.com/Checkmarx/Goatlin
https://github.com/skylot/jadx
http://jd.benow.ca/
https://ibotpeaches.github.io/Apktool/
https://github.com/skylot/jadx
http://jd.benow.ca/

@Nullable

protected	Boolean	doInBackground(@NotNull	Void...	params)	{

	Intrinsics.checkParameterIsNotNull(params,	"params");

	boolean	z	=	true;

			if	((Intrinsics.areEqual(this.mUsername,	(Object)	"Supervisor")	&	Intrinsics.areEqual(this.mPassword,	(Obje

ct)	"MySuperSecretPassword123!"))	!=	0)	{

	return	Boolean.valueOf(true);

	}

	//	...

}

Resources

Tools
apktool
jadx
jd-gui

Readings
OWASP	Mobile	Top	10	2016:	M10	-	Extraneous	Functionality

M10:	Extraneous	Functionality

32www.checkmarx.com

https://github.com/skylot/jadx
http://jd.benow.ca/
https://ibotpeaches.github.io/Apktool/
https://www.owasp.org/index.php/Mobile_Top_10_2016-M10-Extraneous_Functionality

Final	Notes
The	Checkmarx	Research	team	is	confident	that	the Kotlin Guide - Mobile Application Secure	Coding
Practices	provided value	to	you.	We	encourage	you	to	refer	to	it	often,	as	you're	developing	Android
apps	written	in	Kotlin. The	information	found	in	this	book can	help	you	develop	more-secure	apps	and
avoid	the	common mistakes	and	pitfalls	that	lead	to	vulnerable	applications.	Understanding	that
exploitation	techniques are	always	evolving,	new	vulnerabilities	might	be	found	in	the	future,	based	on
dependencies	that	may make	your	application	vulnerable.

Since	the	OWASP	Mobile	Top	10	changes	every	few	years,	we	recommend	staying	abreast	of	the
following:

OWASP	Mobile	Top	10	2016
OWASP	Mobile	Testing	Guide
Check	OWASP	Cheat	Sheet	Series

Final	Notes

33www.checkmarx.com

https://www.owasp.org/index.php/Mobile_Top_10_2016-Top_10
https://www.owasp.org/index.php/OWASP_Mobile_Security_Testing_Guide
https://www.owasp.org/index.php/OWASP_Cheat_Sheet_Series

See How Checkmarx is Setting the New
Standard for Software & Application Security:

Learn More

www.checkmarx.com

	Introduction
	M1: Improper Platform Usage
	M2: Insecure Data Storage
	M3: Insecure Communication
	M4: Insecure Authentication
	M5: Insufficient Cryptography
	M6: Insecure Authorization
	M7: Client Code Quality
	M8: Code Tampering
	M9: Reverse Engineering
	M10: Extraneous Functionality
	Final Notes
	Blank Page

